簡易檢索 / 詳目顯示

研究生: 趙慶安
Chao, Ching-An
論文名稱: 在交流電場下實現定向組裝奈米粒子和DNA分子來增益FRET感測
Facilitated FRET Sensing by Directional Assembly of Nanocolloids and DNA Molecules in AC Electric Fields
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 106
中文關鍵詞: 量子點螢光共振能量轉移交流電荷動力學DNA
外文關鍵詞: Quantum dots, FRET, AC Electro-kinetics, DNA
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢光共振能量轉移(Florescence Resonance Energy Transfer, FRET)技術可應用在分子檢測與探討分子間交互作用,但是FRET訊號通常很弱,需要放大訊號才能偵測到FRET訊號,本實驗以修飾有stretapvidin的量子點(Quantum dots, QD)作為螢光供體,捕捉接有螢光受體Alexa 647的單股DNA(ssDNA)進行FRET檢測。透過交流電荷動力學,如:交流電滲流(AC electro-osmosis, ACEO)、介電泳(Dielectrophoresis, DEP)及電場誘導偶極(FIDA)來集濃QD,再以QD上修飾的stretapvidin來捕捉修飾有biotin的ssDNA進行FRET分子檢測,試圖放大FRET訊號提升效率,增加FRET檢測的靈敏度。
    本文第三章,首先我介紹了新的電極設計,依據學姐梁紫涵(2017)的實驗結果發現ACEO的Pumping作用,此作用有助於電極聚集捕捉奈米粒子,我改良設計四角電極來增加AC pumping的作用。在做FRET實驗前要先進行QD掃頻測試,選擇適當頻率進行FRET實驗,實驗結果發現在QD有形成串鏈的位置FRET效率可提高到60%,而沒有串鏈的位置效率則僅有40%,平均的FRET效率可達到30%。QD串鏈的形成是由於電場誘導偶極(Field Induced Dipole Attraction, FIDA)的結果,而FRET效率的提升我認為與QD形成一維的有序排列有關。
    本文第四章,根據第三章的結果:QD有向序性的排列有助FRET訊號的提升。基於上述結果我選擇以長鏈雙股的λDNA作為骨幹,透過QD表面修飾的stretapvidin與λDNA上的biotin以間隔200個鹼基對鍵結,再以交流電場捕捉及拉伸λDNA使QD形成一維的FRET感測器。本章分三部分,第一部份我以不同頻率分別捕捉λDNA以了解λDNA的介電性質,第二部分進行修飾有QD之λDNA的掃頻,研究其受電場作用捕捉及拉伸的現象,第三部分根據掃頻結果進行FRET檢測。實驗結果發現FRET效率均在48%以上且最高可提高到80%,平均的FRET效率可達到60%,明顯比單只有QD時的30%更高,我猜測可能的原因是QD在一維線狀下Diffusion flux是以1/r的方式緩慢衰減;相較於球形Diffusion flux是以1/r2的方式衰減。QD-DNA在拉伸形成一維線狀的幾何形狀下,ssDNA較容易擴散到QD-DNA上鍵結率較高而有較高的FRET效率。這些實驗結果顯示定向組裝QD使QD有一維的有序排列,可以有效增強FRET效率,同時提升FRET在生物分子檢測中的實用性。
    在第三章及第四章我已實現FRET效率的提升,我本文第五章我調降Target ssDNA的濃度來進行FRET靈敏度檢測,實驗結果發現,隨著Target ssDNA濃度的降低,FRET訊號、效率有下降的趨勢,ssDNA濃度可下探至1.67×10-12M。

    A successful FRET detection would rely on whether weak FRET signals can be overcome by having FRET signals greatly amplified. In this thesis, I report a new strategy to promote FRET sensing. I employ stretapvidin-coated quantum dot (QD) as the FRET donor to probe target single stranded DNA (ssDNA) tagged with Alexa 647 as the FRET acceptor. In the experiment, we first concentrate QDs under AC electric fields with joint effects of AC electro-osmosis (ACEO), dielectrophoresis (DEP), and field induced dipole attraction (FIDA). The target ssDNAs can then be captured by QDs, capable of emitting intensified FRET signals with unusually high FRET efficiencies. The results reveal that the measured FRET efficiency is very sensitive to how QDs are aggregated. I speculate that the FRET enhancement could be a result of directional assembly of QDs due to FIDA.
    I further extend the idea that directional assembly of QDs might help increasing FRET signals. I conjugate QDs along the backbone of long double stranded λDNA molecules. Having QD-DNAs trapped and stretched by AC fields, I can turn such QD-DNAs into 1-D FRET sensors, capable of amplifying FRET signals more efficiently. Using these QD-λDNA nanowires, I find that the FRET efficiency is at least 30% and can reach as high as 86%. The averaged FRET efficiency is 44%, higher than 30% for the pure QD case. I am still able to detect target ssDNAs reliably at the concentration as low as 1.67 picoM.

    摘要 i 誌謝 viii 目錄 ix 圖目錄 xiv 表目錄 xvii 符號說明 xviii 第一章 緒論 1 1.1研究背景 1 1.2研究動機 1 1.3文獻回顧 2 第二章 基本原理 8 2.1螢光共振能量轉移(Florescence Resonance Energy Transfer, FRET) 8 2.2交流電荷動力學(AC Electrokinetics) 9 第三章QD Based FRET分子檢測 18 3.1電極設計 18 3.2 QD掃頻測試 18 3.2.1實驗裝置 18 3.2.2工作溶液 19 3.2.3實驗步驟 19 3.2.4實驗相關細節 20 3.2.5實驗結果 21 3.3 FRET檢測 25 3.3.1實驗裝置 25 3.3.2工作溶液 25 3.3.3實驗步驟 26 3.3.4實驗相關細節 27 3.3.5實驗結果與討論 28 3.4結論 29 第四章QD修飾之λDNA的FRET分子檢測 37 4.1 λDNA掃頻測試 37 4.1.1實驗裝置 37 4.1.2工作溶液 38 4.1.3實驗步驟 38 4.1.4實驗相關細節 38 4.1.5實驗結果 39 4.2 QD修飾之λDNA捕捉及拉伸 42 4.2.1實驗裝置 42 4.2.2工作溶液 42 4.2.3實驗步驟 44 4.2.4實驗相關細節 44 4.2.5 實驗現象與探討 45 4.3 QD修飾之λDNA FRET檢測 49 4.3.1實驗裝置 49 4.3.2工作溶液 49 4.3.3實驗步驟 51 4.3.4實驗相關細節 52 4.3.5實驗結果與討論 53 4.4 QD修飾之λDNA FRET檢測(Negative Control) 54 4.4.1實驗裝置 54 4.4.2工作溶液 55 4.4.3實驗步驟 57 4.4.4實驗結果與討論 58 4.5結論 58 第五章 FRET 靈敏度檢測 67 5.1不同Target ssDNA濃度的FRET實驗 67 5.1.1實驗裝置 67 5.1.2工作溶液 67 5.1.3實驗步驟 70 5.1.4實驗相關細節 71 5.2實驗的現象與探討 71 第六章 結論與未來工作 76 參考文獻 78 附錄 81 A金電極製作 81 A.1電極光罩設計 81 A.2金電極製程 81 A.2.1玻璃基材清洗 81 A.2.2金屬真空蒸鍍 82 A.2.3微影製程(Photolithigraphy) 82 A.2.3.1塗佈光阻 82 A.2.3.2曝光 83 A.2.3.3顯影 83 A.2.3.4蝕刻 84 B PDMS 微流道製作 87 B.1微流道光罩設計 87 B.2光微影製程 87 B.2.1晶片清洗 87 B.2.2塗佈光阻 87 B.2.3軟烤(Soft Baking) 88 B.2.4曝光與曝後烤 88 B.2.5顯影 88 B.2.6硬烤 89 B.3微流道模型製作 89 B.4金電極與微流道系統之整合與組裝 89 B.4.1金電極晶片與外接電路組裝 89 B.4.2 PDMS微流道與外部管線組合 90 B.4.3微流道與微電極組合 90 C 影像拍攝與數據處理 95 C.1影像擷取參數設定 95 C.1.1曝光時間( Exposure Time ) 95 C.1.2觀測視窗大小( Binning ) 95 C.1.3影像整體視覺亮度( Visual gain ) 95 C.2 影像擷取時間設定 95 C.3 螢光濾片的選擇 96 C.4 螢光强度的静態與動態擷取 97 C.3.1 螢光強度的靜態擷取 97 C.3.2 螢光強度的動態擷取 97 C.5 FRET相關計算參數設定 98 C.5.1 QD螢光強度的擷取 98 C.5.2 FRET螢光強度擷取 98 C.5.3 FRET相關計算 100 D 儀器設備使用 106 D.1油鏡使用 106 D.2氧電漿使用 106

    Becker, K., Lupton, J.M., Müller, J., Rogach, A.L., Talapin, D.V., Weller, H. & Feldmann, J. 2006 Electrical control of Förster energy transfer, Nature Material, 5, 777-781.
    Cheng, I.F., Han, H.W. & Chang, H.C. 2012 Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species, Biosensors and Bioelectronics, 33, 36-43.
    Du, J.R., Juang, Y.J., Wu, J.T. & Wei, H.H. 2008 Long-range and superfast trapping of DNA molecules in an AC electrokinetic funnel, Biomicrofluidics, 2, 044103.
    Fraden, S., Hurd, A. J. & Meyer, R. B. 1989 Electric-field-induced association of colloidal particles, Physical Review Letters, 63, 2373.
    Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W. & Velev, O.D. 2001 Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions, Science, 294, 1082-1086.
    Hsieh, S.F., Chang, C.P., Juang, Y.J. & Wei, H.H. 2008 Stretching DNA with electric fields beneath submicron interfacial constriction created by a closely fitting microdroplet in a microchannel, Applied Physics Letters, 93, 084103.
    Medintz, I. & Hildebrandt, N. 2014 FRET-Forster Resonance Energy Transfer, Germany: Wiley-VCH, Germany.
    Morgan, H. & Green, N.G. 2003 AC Electrokinetic: Colloids and Nanoparticles. Baldock, UK: Research Studies.
    Nikiforov T.T. & Beechem J.M. 2006 Development of homogeneous binding assays based on fluorescence resonance enrgy transfer between quantum dots and Alexa Fluor fluorophores, Analytical Biochemistry, 357, 68-76.
    Srisa-Art, M., Dyson, E.C., deMello, A.J. & Edel, J.B. 2008 Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics, Analytical Chemistry, 80, 7063-7067.
    Swami, N., Chou, C.F., Ramamurthy, V. & Chaurey, V. 2009 Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis, Lab on a Chip, 9, 3212-20.
    Vannoy, C. H., Tavares, A. J., Noor, M. O., Uddayasankar U. & Krull, U. J. 2011 Biosensing with quantum dots: a microfluidic approach, Sensor, 11, 9732-63.
    Washizu, M. & Kurosawa, O. 1990 Electrostatic Manipulation of DNA in Microfabricated Structures, IEEE Xplore: IEEE Transactions on Industry Applications, 26, 1165-1172.
    Wei, W., He, X. & Ma, N. 2014 DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells, Angewandte Chemie International Edition, 53, 5573-5577.
    Zhang, C.Y., Yeh, H.C., Kuroki, M.T. & Wang, T.H. 2005 Single-quantum-dot-based DNA Nanosensor, Nature Material, 4, 826-831.
    Zhang, C. Y., & Johnson, L. W. 2007 Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit, Angewandte Chemie International Edition, 46, 3482-85.
    Zhou, R., Chang, H.C., Protasenko, V., Kuno, M., Singh, A.K., Jena, D. & Xing, H. 2007 CdSe nanowires with illumination-enhanced conductivity: Induced dipoles, dielectrophoretic assembly, and field-sensitive emission, Journal of Applied Physics, 101, 073704.
    連政偉,製備含量子點修飾之DNA分子梳並應用其發展具分子探測與檢測功能之一維FRET生物感測器。國立成功大學化工所碩士論文,2011。
    陳信龍,膠體粒子交互作用與單一高分子鏈構形變化之偵測與診斷。國立成功大學化工所碩士論文,2011。
    陳易靖,以電荷動力實現快速且高靈敏度的FRET分子感測。國立成功大學化工所碩士論文,2017。
    梁紫涵,整合DNA拉伸及交流電荷動力作用製備快速且高靈敏度的FRET分子感測器。國立成功大學化工所碩士論文,2017。

    下載圖示 校內:2023-07-30公開
    校外:2023-07-30公開
    QR CODE