簡易檢索 / 詳目顯示

研究生: 何政軒
Ho, Zheng-Xuan
論文名稱: 低溫史特靈冷凍機之性能受再生器特性之影響研究
Effects of Regenerator Characteristics on Performance of Stirling Cryocooler
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 120
中文關鍵詞: 低溫史特靈冷凍機再生器孔隙材料理論模型
外文關鍵詞: Stirling cryocooler, Regenerator, Porous material, Theoretical model
相關次數: 點閱:57下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高溫超導體技術與光學紅外感測器的需求增加,使低溫冷凍 機之發展備受關注,其中的史特靈低溫冷凍機具有結構緊凑、工作效 率高、工作溫度區間廣等優點。再生器為史特靈冷凍機中關鍵的其中 一環,對冷凍機之性能表現具有顯著之影響。本研究通過數學模型模 擬及實驗驗證,探討再生器特性對史特靈冷凍機性能之影響。本研究 分析並測試了不鏽鋼編織網、銅編織網、鋼絲絨、3D 列印金屬再生 器四種再生器,結果顯示使用不鏽鋼編織網的再生器設計具有最好的 性能表現。本研究將多個不同網目數的不鏽鋼編織網堆叠組合成多種 再生器配置方案並進行測試,結果顯示組合再生器擁有比單一再生器 更好的性能,驗證了再生器擁有孔隙率梯度變化對性能的正向影響。

    Due to rapid development and need for HTS technology and infrared detector, development of cryocooler for low temperature cooling applications has gained increasing attentions lately. Among them is Stirling cryocooler that has the advantages of compact design, high efficiency and wide operating temperature range. The regenerator is a crucial part within Stirling cooler system, having significant effects on overall performance of the cooler. A theoretical model specially emphasizes on effects of regenerator characteristics has been developed and verified by experiments. Four different types of regenerators: woven stainless steel meshes, woven copper meshes, stainless steel wool and 3D-printed metal regenerator have been analyzed and tested. Results yield woven stainless steel meshes as the superior regenerator choice. Additionally, woven stainless steel meshes of different mesh number were combined to create multiple hybrid regenerator configuration. Performance improvement has been obtained by implementing hybrid regenerator configuration, showing positive effects of having porosity gradient along the regenerator.

    目錄摘要 I Abstract II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號索引 XIX 第一章 前言 1 1.1 研究背景與動機 1 1.2 史特靈冷凍機工作原理 3 1.3 再生熱交換器發展概述 4 1.4 研究目的 7 1.5 論文架構 8 第二章 理論模型 9 2.1 機構運動模式與初始條件 9 2.2 熱力學模型 13 2.3 工作流體與材料性質變化 21 第三章 設計與實驗方法 23 3.1 史特靈冷凍機設計概念 23 3.2 再生器設計 25 3.2.1 不鏽鋼編織網 25 3.2.2 銅編織網 27 3.2.3 鋼絲絨 27 3.2.4 3D 列印金屬再生器 28 3.3 原型機組立 29 3.4 實驗設備與實驗平臺架設 30 第四章 結果討論 34 4.1 基準組 34 4.2 壓縮比之影響 39 4.3 再生器特性之影響 40 4.3.1 不鏽鋼編織網再生器 40 4.3.2 銅編織網再生器 45 4.3.3 鋼絲絨再生器 47 4.3.4 3D 列印金屬再生器 47 第五章 結論 50 參考文獻 52

    [1] A. Rogalski, "Recent progress in infrared detector technologies," Infrared Physics & Technology, vol. 54(3), pp. 136-154, 2011.
    [2] A. Katz, Z. B. Haim, S. Riabzev, V. Segal, A. Filis and D. Gover, "Development and optimization progress with RICOR cryocoolers for HOT IR detectors," Tri-Technology Device Refrigeration, 2016.
    [3] D. Willems, R. Arts, G. de Jonge, J. Mullie and T. Benschop, "Miniature Stirling cryocoolers at Thales Cryogenics: Qualification results and integration solutions," International Cryocooler Conference, Boulder, 2016.
    [4] N. Matsumoto, Y. Yasukawa, K. Ohshima, K. Toyama, Y. Tsukahara and T. Kamoshita, "Development of the miniature pulse tube cryocooler," AIP Conference Proceedings, American Institute of Physics, 2004.
    [5] K. Wilson and D. Gedeon, "Status of pulse tube cryocooler development at Sunpower," Cryocoolers, vol. 13, pp. 31-40, 2005.
    [6] A. Karandikar and A. Fiedler, "Scaling STI's sapphire cryocooler for applications requiring higher heat loads," AIP Conference Proceedings, American Institute of Physics, 2012.
    [7] R. Griot, C. Vasse, R. Arts, R. Ivanov, L. Höglund and E. Costard, "Cryogenic solutions for IR detectors–a guideline for selection," Opto-Electronics Review, pp. e144566-e144566, 2023.
    [8] D. Willems, R. Arts, G. De Jonge, P. Bollens, B. de Veer and J. Mullié, "High-Availability Cooler Developments at Thales Cryogenics," Thales Cryogenics, Eindhoven, The Netherlands, 2022.
    [9] W. Bo, C. Yijun, W. Haoren, Z. Qinyu, L. Dongli and G. Zhihua, "A miniature Stirling cryocooler operating above 100 Hz down to liquid nitrogen temperature," Applied Thermal Engineering, vol. 186(16), pp. 116524, 2021.
    [10] C.-H. Cheng and J.-S. Huang, "Development of a 100-K pneumatically driven split-type cryogenic Stirling cryocooler based on experimental and numerical study," Cryogenics, vol. 105, pp. 102998, 2020.
    [11] M. Singh, M. Sadana, S. Sachdev and G. Pratap, "Development of miniature Stirling cryocooler technology for Infrared Focal Plane array," Defence Science Journal, vol. 63, pp. 571-580, 2013.
    [12] A. J. Organ, "The regenerator and the Stirling engine," Wiley, 1997.
    [13] M. Tanaka, I. Yamashita, and F. Chisaka, "Flow and heat transfer characteristics of the Stirling engine regenerator in an oscillating flow," JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, vol. 33(2), pp. 283-289, 1990.
    [14] D. Gedeon and J. Wood, "Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts," NASA Contractor Report, no. 198442, 1996.
    [15] L. Trevisani, T. Kuriyama, F. Negrini, T. Okamura, Y. Ohtani and M. Okamura, "Performance improvement of a two-stage GM cryocooler by use of Er (Ni0. 075Co0. 925) 2 magnetic regenerator material," Cryogenics, vol. 42(10), pp. 653-657, 2002.
    [16] T. Numazawa, T. Yanagitani, H. Nozawa, Y. Ikeya, R. Li and T. Satoh, "A new ceramic magnetic regenerator material for 4 K cryocoolers," Cryocoolers, vol. 12, pp. 473-481, 2003.
    [17] S. K. Andersen, H. Carlsen, and P. G. Thomsen, "Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations," Energy Conversion and Management, vol. 47(7-8), pp. 894-908, 2006.
    [18] K. Nam and S. Jeong, "Development of parallel wire regenerator for cryocoolers," Cryogenics, vol. 46(4), pp. 278-287, 2006.
    [19] M. Dietrich, L. Yang, and G. Thummes, "High-power Stirling-type pulse tube cryocooler: Observation and reduction of regenerator temperature-inhomogeneities," Cryogenics, vol. 47(5-6), pp. 306-314, 2007.
    [20] A. S. Abduljalil, Z. Yu, and A.J. Jaworski, "Selection and experimental evaluation of low-cost porous materials for regenerator applications in thermoacoustic engines," Materials & Design, vol. 32(1), pp. 217-228, 2011.
    [21] R. Gheith, F. Aloui, and S.B. Nasrallah, "Determination of adequate regenerator for a Gamma-type Stirling engine," Applied energy, vol. 139, pp. 272-280, 2015.
    [22] D. Bao, J. Tan, L. Zhang, Z. Gao, Y. Zhao and H. Dang, "A two dimensional model of regenerator with mixed matrices and experimental verifications for improving the single-stage Stirling type pulse tube cryocooler," Applied Thermal Engineering, vol. 123, pp. 1278-1290, 2017.
    [23] N. A. M. Rasli and S. Saadon, "CFD Analysis of Heat Transfer Through Stirling Engine with Different Regenerators," Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 64(1), pp. 126-134, 2019.
    [24] D. Dherbécourt, S. Martin, I. Charles, J. Duval, J. André and C. Daniel, "Impact of the cold regenerator mesh geometry on low temperature pulse tube cold finger performance," IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020.
    [25] S. K. Garg, B. Premachandran, M. Singh, S. Sachdev and M. Sadana, "Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler," Thermal Science and Engineering Progress, vol. 15, pp. 100442, 2020.
    [26] R. A. Aasole, K. Ambarwele, H. Vaidya, S. Joshi and A. Raut, "A Review on Performance and Evaluation of Modified Regenerator’s Material in Stirling-Type Pulse Tube CryoCooler," Smart Technologies for Energy, Environment and Sustainable Development, Vol 1, pp. 821-829, 2022.
    [27] H. S. Kim, I.C. Gwak and S.H. Lee, "Numerical analysis of heat transfer area effect on cooling performance in regenerator of free piston Stirling cooler," Case Studies in Thermal Engineering, vol. 32, pp. 101875, 2022.
    [28] Q. Cao, M. Wang, B. Huo, M. Luan, P. Li and Q. Zhao, "Varying the cross-sectional area of the regenerator for improving the efficiency of the 4 K pulse tube refrigerator," Applied Thermal Engineering, pp. 120051, 2023.
    [29] J. S. Huang and C. H. Cheng, "An Efficient Theoretical Model of Rotary-Integral Stirling Cryocooler Validated by Experimental Testing," Thermal Science and Engineering Progress, 101996, 2023.
    [30] T. L. Bergman, T. L. Bergman, F. P. Incropera, D. P. Dewitt and A. S. Lavine, "Fundamentals of heat and mass transfer," Wiley, 2011.
    [31] R. A. Ackermann, "Cryogenic regenerative heat exchangers," Springer Science & Business Media, 2013.
    [32] R. White, "Vuilleumier Cycle Cryogenic Refrigeration," Technical Report, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, OH, USA, 1976.
    [33] H. Kuehl, "Numerically efficient modelling of non-ideal gases and their transport properties in Stirling cycle simulation," Proceedings of the 17th International Stirling Engine Conference and Exhibition (ISEC), Newcastle Upon Tyne, UK, 2016.
    [34] V. D. Arp and R.D. McCarty, "Thermophysical Properties of Helium 4 from 0.8 to 1500 K with Pressures to 2000 MPa," Technical Report, NIST, Boulder, CO, USA, 1989.
    [35] E. Marquardt, J. Le and R. Radebaugh, "Cryogenic material properties database", Cryocoolers, vol. 11, pp. 681-687, 2002.
    [36] N. Simon, "Properties of copper and copper alloys at cryogenic temperatures," NIST monograph, vol. 177, pp. " 8-6"-" 8-22", 1992.
    [37] Parker, "Parker O-Ring Handbook (ORD 5700)", Parker Hannifin Corporation, Cleveland, OH. 2021.
    [38] 鄭金祥, 黃振軒, 陳嬿妃, "組合式再生器及其再生器單元," 中華 民國發明專利第 I776254 號, 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE