簡易檢索 / 詳目顯示

研究生: 游赫威
You, He-Wei
論文名稱: 蕭特基式氮氧化物感測器之製備研究
A Study on Preparation of Schottky-type Nitrogen Oxides Sensors
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 103
中文關鍵詞: 銀離子雙硫醇自組裝單分子層蕭特基二極體氮氧化物氣體感測器
外文關鍵詞: silver, alkanedithiol, self-assembled monolayer, Schottky diode, nitrogen oxides, gas sensor
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以銀修飾癸烷烴雙硫醇單分子層/金/砷化鎵蕭特基二極體作為氮氧化物(NOx)感測器,並探討其感測特性。實驗中,首先製備金/砷化鎵蕭特基二極體,接著導入烷烴雙硫醇單分子層於金電極上以作為NOx之感測材。為提升元件對NOx之靈敏度,進一步以銀修飾單分子層之末端官能基製成感測元件,探討銀離子浸泡濃度對元件感測特性之影響,並針對氣體種類、濃度及操作溫度等操作變因來加以探討。

    實驗結果顯示,癸烷烴雙硫醇單分子層/Au/GaAs對NO2及NO之感測靈敏度分別為49.5及35.3;此元件經銀修飾後,對NOx之感測靈敏度有顯著提升,且隨著浸泡液銀離子濃度之升高而增大。當銀濃度1.0mM以上時,單分子層銀含量亦達到飽和值,此元件對NO2、NO之靈敏度分別提升到133.4、45.1。另外,感測靈敏度隨NOx濃度之增加而增大,且呈現良好的正比關係。當操作溫度範圍在25-110℃,發現靈敏度隨著溫度之上升而下降,亦即25℃時之靈敏度為最大。由選擇性實驗結果顯示,銀修飾之元件對氨氣、氫氣及一氧化碳無明顯之響應,亦即元件對氮氧化物有極高之選擇性。將背景氣體由氮氣更換為空氣時,元件對NOx之感測特性幾乎不變。

    文中並提出一吸附動力模式來描述感測行為。實驗結果顯示,元件對NOx之感測行為遵循文中所提之模式,據此估算出元件對NO2吸附之正、逆向反應活化能分別為15.47、9.31kJ/mol;而對NO之吸附則分別為15.33、9.67kJ/mol;另外,NO2、NO之吸附熱則分別為6.16、5.66kJ/mol。

    In this work, novel nitrogen oxides (NOx) sensors based on silver-modified alkanedithiol/Au/GaAs Schottky diodes were fabricated and studied. Experimentally, Au/GaAs Schottky diodes were firstly fabricated followed by introducing alkanedithiol monolayer on the Au electrode for NOx sensing. In order to promote the NOx sensitivities, the device was further modified with silver in the terminal group of the monolayer. The effect of silver concentration of the immersion solution on the sensing characteristics was investigated. Furthermore, the sensing characteristics of the Ag-modified devices toward nitrogen oxides were studied under various gases, concentrations, and temperatures.

    From the experimental results, it revealed that the sensitivities of decanedithiol/Au/GaAs device toward NO2 and NO were 49.5 and 35.3, respectively. After modifying with silver, the device showed a large promotion in NOx sensitivities which have the increasing trend as the silver concentration was increased. When the silver concentration increased above 1.0 mM, the silver content in the monolayer reached to a saturation value. The sensitivities of this device toward NO2 and NO were largely promoted to 133.4 and 45.1, respectively. Besides, the sensitivities increased with increasing NOx concentration and were in good proportional to the NOx concentrations. In the operating temperature range of 25-110℃, the NOx sensitivities of the device decreased with increasing the sensing temperature, i.e., the maximum sensitivities occurred at 25℃. The device also exhibited quite high selectivities toward NOx with respect to H2, NH3 and CO. As replacing the background ambience nitrogen by air, the NOx sensitivities remained without any obvious change.

    A kinetic adsorption model also proposed in this work to describe the sensing behavior of the device. The result showed that the NOx sensing behavior obeyed the proposed model well. Basing on the model, the activation energies of the forward and reverse adsorption reaction for NO2 were determined as 15.47、9.31kJ/mol, respectively, and those for NO were 15.33、9.67kJ/mol, respectively. Besides, the adsorption enthalpies of NO2 and NO were determined as 6.16、5.66kJ/mol, respectively.

    總目錄 中文摘要 I 英文摘要 II 誌謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 符號表 XII 第一章 緒論 1 1.1前言 1 1.2氣體感測器之類型 2 1.2.1 電化學式 3 1.2.2 光學式 4 1.2.3 電阻式 5 1.2.4 觸媒燃燒式 6 1.2.5 懸臂樑式 6 1.2.6 蕭特基場效型 7 1.3自組裝單分子層 8 1.3.1 自組裝單分子層結構 8 1.3.2 金屬基材的選用 9 1.3.3 自組裝單分子層的應用 9 1.4研究動機與目的 11 第二章 原理 17 2.1 自組裝單分子層之形成及結構 17 2.2 紅外線光譜儀分析 18 2.3 XPS分析 20 2.4 蕭特基二極體 21 2.4.1 蕭特基接合 21 2.4.2 蕭特基二極體之電性 23 2.5 感測原理 25 2.6 動力學模式推導 27 第三章 實驗 34 3.1 藥品與材料 34 3.1.1 藥品 34 3.1.2 材料 36 3.1.3 氣體 36 3.2分析儀器與設備 37 3.2.1 實驗設備 37 3.2.2 分析儀器 38 3.3蕭特基二極體式氣體感測器元件製備 38 3.3.1元件結構 38 3.3.2元件製備 39 3.4氮氧化物(NOx)氣體感測方法 43 3.4.1穩態量測 43 3.4.2暫態量測 43 3.4.3選擇性測試 44 3.5特性分析 44 3.5.1 FT-IR分析樣品製備 44 3.5.2 XPS分析試片製備 45 第四章 結果與討論 48 4.1 銀離子修飾雙硫醇之特性分析 48 4.1.1 FT-IR分析 48 4.1.2 XPS分析 49 4.2 元件之電性探討 50 4.2.1 銀濃度之影響 50 4.2.2 溫度之影響 50 4.2.3 氣氛之影響 51 4.3 氮氧化物之感測 51 4.3.1 碳數對於感測之影響 51 4.3.2 銀離子之影響 52 4.3.3 氣體濃度之影響 55 4.3.4 溫度之影響 55 4.3.5 氣氛之影響 56 4.3.6 選擇性測試 57 4.4 動力學模式分析與討論 58 第五章 結論與建議 94 5.1 結論 94 5.2 建議 95 參考文獻 96

    1. K. Mitchell and E. Michaelis, "Multimembrane carbon fiber electrodes for physiological measurements of nitric oxide." Electroanal., 10(2) 81-88 (1998)
    2. F. Bedioui and N. Villeneuve, "Electrochemical nitric oxide sensors for biological samples-principle, selected examples and applications." Electroanal., 15(1) 5-18 (2003)
    3. N. Miura, M. Iio, G. Lu, and N. Yamazoe, "Solid-state amperometric NO2 sensor using a sodium ion conductor." Sen Actuators: B., 35(1-3) 124-129 (1996)
    4. Y. Shimizu, H. Nishi, H. Suzuki, and K. Maeda, "Solid-state NOx sensor combined with NASICON and Pb¡VRu-based pyrochlore-type oxide electrode." Sen. Actuators B., 65(1-3) 141-143 (2000)
    5. F. Arregui, R. Claus, K. Cooper, C. Ndez-Valdivielso, and I. As, "Optical fiber gas sensor based on self-assembled gratings." J. lightwave technol., 19(12) 1932 (2001)
    6. M. nik and G. Stewart, "Coherence addressing of quasi-distributed absorption sensors by the FMCW method." J. lightwave technol., 18(1) 57 (2000)
    7. J. Ceron Solis, E. De la Rosa, and E. Pena Cabrera, "Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure." Optical Materials, 29(2-3) 167-172 (2006)
    8. S. Barker and R. Kopelman, "Development and cellular applications of fiber optic nitric oxide sensors based on a gold-adsorbed fluorophore." Anal. Chem, 70(23) 4902-4906 (1998)
    9. H. He and Z. Fan. Optical sensitivity to NOx of Ag-doped ZnO thin films. 1998.
    10. C. Baratto, S. Todros, G. Faglia, E. Comini, G. Sberveglieri, S. Lettieri, L. Santamaria, and P. Maddalena, "Luminescence response of ZnO nanowires to gas adsorption." Sen. Actuators B., 140(2) 461-466 (2009)
    11. J. Harper and M. Sailor, "Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon." Anal. Chem, 68(21) 3713-3717 (1996)
    12. J. Harper and M. Sailor, "Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon." Anal. Chem, 68(21) 3713-3717 (1996)
    13. W. H. Brattain and J. Bardeen, "Surface properties of germanium", Bell Systems Tech. J., 32 1-41 (1953)
    14. G. Heiland, "Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen." Zeitschrift für Physik A Hadrons and Nuclei, 138(3) 459-464 (1954)
    15. N. Taguchi, Japan Patent 45-38200 (1962 ).
    16. R. Yui, X. Huang, Z. Wang, Y. Zhou and L. Liu, "A chemisorption-based microcantilever chemical sensor for the detection of trimethylamine." Sen. Actuators B., 145(1) 474-479 (2010)
    17. W. Bigelow, D. Pickett, and W. Zisman, "Oleophobic monolayers* 1:: I. Films adsorbed from solution in non-polar liquids." J. Colloid Interface Sci. 1(6): 513-538 (1946)
    18. R. G. Nuzzo., D. L. allara., " Adsorption Of Bifunctional Organic Disulfides On Gold Surfaces" J. Am. Chem. Soc., 105(13) 4481-4483 (1983)
    19. C.E.D. Chidsey.; R.W. Murray., "Electroactive Polymers And Macromolecular Electronics" Science., 231(4733) 25-31 (1986)
    20. Di Ventra. M., Lang. N.D., Pantelides. S.T., " Electronic transport in molecular devices from first principles" J. Am. Chem. Soc., 844 219-229 (2003)
    21. S. Weiner., L. Addadi., " Design strategies in mineralized biological materials" J. Mater. Chem., 7(5) 689-702 (1997)
    22. P.J. Collings., J. S. Patel., "Handbook of liquid crystal research; oxford university press" New York(1997)
    23. X.Fang, O. K. Tan., M. S. Tse and E. E. Ooi, "A label-free immunosensor for diagnosis of dengue infection with simple electrical measure" Biosens. Bioelectron., 25 1137-1142(2010)
    24. F. M. Boldt, N. Baltes, K. Borgwarth, and J. Heinze, "Investigation of carboxylic-functionalized and n-alkanethiol self-assembled monolayers on gold and their application as pH-sensitive probes using scanning electrochemical microscopy." Surf. Sci., 597(1-3) 51-64 (2005)
    25. R. Shervedani, A. Hatefi-Mehrjardi, and A. Asadi-Farsani, "Sensitive determination of iron (III) by gold electrode modified with 2-mercaptosuccinic acid self-assembled monolayer." Anal. Chim. Acta, 601(2) 164-171 (2007)
    26. E. Malel, J. Sinha, I. Zawisza, G. Wittstock, and D. Mandler, "Electrochemical detection of Cd2+ ions by a self-assembled monolayer of 1, 9-nonanedithiol on gold." Electrochim. Acta, 53(23) 6753-6758 (2008)
    27. J. Moon, T. Kang, S. Oh, S. Hong, and J. Yi, "In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy." J. Colloid Interf. Sci., 298(2) 543-549 (2006)
    28. A.M. Etorki, A.R. Hillman, K.S. Ryder, and A. Glidle, "Quartz crystal microbalance determination of trace metal ions in solution." J. Electroanal. Chem., 599(2) 275-287 (2007)
    29. R. Nuzzo and D. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces." J. Am. Chem. Soc, 105(13) 4481-4483 (1983)
    30. M. Zharnikov, A. Kuller, A. Shaporenko, E. Schmidt, and W. Eck, "Aromatic self-assembled monolayers on hydrogenated silicon." Langmuir, 19(11) 4682-4687 (2003)
    31. B. Neves, M. Salmon, P. Russell, and E. Troughton Jr, "Spread coating of OPA on mica: from multilayers to self-assembled monolayers." Langmuir, 17(26) 8193-8198 (2001)
    32. J. Noh and M. Hara, "Molecular-scale growth processes of alkanethiol self-assembled monolayers on Au (111)." Riken Review, 38 49-51 (2001)
    33. S. Moccelini, S. Fernandes, T. de Camargo, A. Neves, and I. Vieira, "Self-assembled monolayer of nickel (II) complex and thiol on gold electrode for the determination of catechin." Talanta, 78(3) 1063-1068 (2009)
    34. M. Cygan, G. Collins, T. Dunbar, D. Allara, C. Gibbs, and C. Gutsche, "Calixarene monolayers as quartz crystal microbalance sensing elements in aqueous solution." Analytical chemistry(Washington, DC), 71(1) 142-148 (1999)
    35. A. Abdelghani, C. Veillas, J. Chovelon, N. Jaffrezic-Renault, and H. Gagnaire, "Stabilization of a surface plasmon resonance (SPR) optical fibre sensor with an ultra-thin organic film: application to the detection of chloro-fluoro-carbon (CFC)." Synthetic Metals, 90(3) 193-198 (1997)
    36. G. Sigal, C. Bamdad, A. Barberis, J. Strominger, and G. Whitesides, "A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance." Anal. Chem, 68(3) 490-497 (1996)
    37. M. Collinson, E. Bowden, and M. Tarlov, "Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes." Langmuir, 8(5) 1247-1250 (1992)
    38. K. Hansen, H. Ji, G. Wu, R. Datar, R. Cote, A. Majumdar, and T. Thundat., "Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches." Analytical chemistry(Washington, DC), 73(7) 1567-1571 (2001)
    39. B. Ko, B. Babcock, G. Jennings, S. Tilden, R. Peterson, D. Cliffel, and E. Greenbaum, "Effect of surface composition on the adsorption of photosystem I onto alkanethiolate self-assembled monolayers on gold." Langmuir: the ACS journal of surfaces and colloids, 20(10) 4033 (2004)
    40. F. Ko, Z. Yeh, C. Chen, and T. Liu, "Self-aligned platinum-silicide nanowires for biomolecule sensing." J. Vac. Sci. Technol. B., 23 3000 (2005)
    41. S. Choi, Y. Son, Y. Lee, K. Kim, and I. Chung, "Polymerization of 3TUTS SAM Formed on ITO Substrates." Mol. Crys. Liq. Cryst., 471(1) 163-171 (2007)
    42. W. Thompson and J. Pemberton, "Characterization of octadecylsilane and stearic acid layers on Al2O3 surfaces by Raman spectroscopy." Langmuir, 11(5) 1720-1725 (1995)
    43. A. Ali Umar, M. Mat Salleh, and M. Yahaya, "Self-assembled monolayer of copper (II) meso-tetra (4-sulfanatophenyl) porphyrin as an optical gas sensor." Sen. Actuators B., 101(1-2) 231-235 (2004)
    44. J. DePriest, F. Meriaudeau, P. Oden, T. Downey, A. Passian, A. Wig, and T. Ferrell, Chemically sensitive surface plasmon devices employing a self-assembled monolayer composite film. 1998.
    45. X. Zhou, L. Zhong, S. Li, S. Ng, and H. Chan, "Organic vapour sensors based on quartz crystal microbalance coated with self-assembled monolayers." Sen. Actuators B., 42(1) 59-65 (1997)
    46. D. Sutar, N. Padma, D. Aswal, S. Deshpande, S. Gupta, and J. Yakhmi, "Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor." Sen. Actuators B., 128(1) 286-292 (2007)
    47. S. Marshall, D. Schwartz, and J. Medlin, "Selective acetylene detection through surface modification of metal-insulator-semiconductor sensors with alkanethiolate monolayers." Sen. Actuators B., 136(2) 315-319 (2009)
    48. L.Dai, L.Wang, G.J. Shao, Y.H. Li and Z.C. Hao," An amperometric NO2 sensor based on nano-structured La0.75Sr0.25Cr0.5Mn0.5O3 prepared by impregnating method." J. Alloys Compd., 526 145-150 (2012)
    49. C. Chen, Y. Wei, G. Sun and B. Shao," Growth of Indium Oxide Nanowalls on Patterned Conducting Substrates:Towards Direct Fabrication of Gas Sensors." Chem. Asian J. 7 1018-1025 (2012)
    50. H. Kim, S. An, C. Jin and C. Lee," Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts" Curr. Appl Phys. 12 1125-1130 (2012)
    51. M. Sauvan and C. Pijolat, "Selectivity improvement of SnO2 films by superficial metallic films." Sen Actuators B., 58(1-3) 295-301 (1999)
    52. T. Hyodo, S. Abe, Y. Shimizu, and M. Egashira, "Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof." Sen. Actuators B., 93(1-3) 590-600 (2003)
    53. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors." Science, 287(5453) 622 (2000)
    54. L. Chen and S. Tsang, "Ag doped WO3-based powder sensor for the detection of NO gas in air." Sen. Actuators B., 89(1-2) 68-75 (2003)
    55. A. Tomchenko, V. Khatko, and I. Emelianov, "WO3 thick-film gas sensors." Sen. Actuators B., 46(1) 8-14 (1998)
    56. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube molecular wires as chemical sensors." Science, 287(5453) 622 (2000)
    57. C. Liu, J. Li, C. Chang, Y. Chao, H. Meng, S. Horng, C. Hung, and T. Meng, "Selective real-time nitric oxide detection by functionalized zinc oxide." J. Phys D: Appl. Phys., 42 155105 (2009)
    58. M. Mohammadi and D. Fray, "Development of nanocrystalline TiO2-VEr2O3 and TiO2-VTa2O5 thin film gas sensors: Controlling the physical and sensing properties." Sen. Actuators B., 141(1) 76-84 (2009)
    59. C. Cantalini, M. Pelino, H. Sun, M. Faccio, S. Santucci, L. Lozzi, and M. Passacantando, "Cross sensitivity and stability of NO2 sensors from WO3 thin film." Sen. Actuators B., 35(1-3) 112-118 (1996)
    60. M. Penza, R. Rossi, M. Alvisi, M. Signore, G. Cassano, D. Dimaio, R. Pentassuglia, E. Piscopiello, E. Serra, and M. Falconieri, "Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications." Thin Solid Films, 517(22) 6211-6216 (2009)
    61. H. Lin, S. Tzeng, P. Hsiau, and W. Tsai, "Electrode effects on gas sensing properties of nanocrystalline zinc oxide." Nanostruct. Mater., 10(3) 465-477 (1998)
    62. R. Ferro, J. Rodriguez, and P. Bertrand, "Development and characterization of a sprayed ZnO thin film-based NO2 sensor." Phys. Status Solidi C, 2(10) 3754 (2005)
    63. X. He, J. Li, and X. Gao, "Effect of V2O5 coating on NO2 sensing properties of WO3 thin films." Sen. Actuators B., 108(1-2) 207-210 (2005)
    64. J. Love, L. Estroff, J. Kriebel, R. Nuzzo, and G. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology." Chem. Rev, 105(4) 1103-1170 (2005)
    65. T. Leung, M. Gerstenberg, D. Lavrich, G. Scoles, F. Schreiber, and G. Poirier, "1, 6-hexanedithiol monolayers on Au (111): A multitechnique structural study." Langmuir, 16(2) 549-561 (2000)
    66. J.H. Yu, J.N. Ngunjiri, A.T. Kelley, and J.C. Gano, "Nanografting versus Solution Self-Assembly of alpha,omega-Alkanedithiols on Au(111) Investigated by AFM." Langmuir, 24(20) 11661-11668 (2008)
    67. N. Larsen, H. Biebuyck, E. Delamarche, and B. Michel, "Order in microcontact printed self-assembled monolayers." J. Am. Chem. Soc, 119(13) 3017-3026 (1997)
    68. C. Bain, E. Troughton, Y. Tao, J. Evall, G. Whitesides, and R. Nuzzo, "Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold." J. Am. Chem. Soc., 111(1) 321-335 (1989)
    69. S. Chen and C. Frank, "Infrared and fluorescence spectroscopic studies of self-assembled n-alkanoic acid monolayers." Langmuir, 5(4) 978-987 (1989)
    70. L. Mazet, C. Varenne, A. Pauly, J. Brunet, and J. Germain, "H2, CO and high vacuum regeneration of ozone poisoned pseudo-Schottky Pd¡VInP based gas sensor." Sen. Actuators B., 103(1-2) 190-199 (2004)
    71. A. Ulman, "Formation and structure of self-assembled monolayers." Chem. Rev, 96(4) 1533-1554 (1996)
    72. J. Schlenoff, M. Li, and H. Ly, "Stability and self-exchange in alkanethiol monolayers." J. Am. Chem. Soc., 117(50) 12528-12536 (1995)
    73. H. Sellers, A. Ulman and Y. Shnidman, " Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers" J. Am. Chem. Soc., 115(21) 9389-9401 (1993)
    74. M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, “Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry,” J. Am. Chem. Soc., 109, 3559 (1987).
    75. M. Venkataramanan, M. Shuguang and T. Pradeep, “3D monolayers of 1,4-benzendimethanethiol on Au and Ag cluster:Distinct difference in adsorption geometry with the corresponding 2D monolayers.” J. Colloid Interface Sci.,216,134-142(1999).
    76. G. Polzonetti, P. Alnot and C. R. Brundle, “The adsorption and reaction of NO2 on the Ag(111) surface I. XPS/UPS and annealing studies between 90 and 300K.” Surf. Sci.,238,226-236(1990).
    77. J. Fukuto, S. Carrington, D. Tantillo, J. Harrison, L. Ignarro, B. Freeman, A. Chen and D. Wink, " Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen,Hydrogen Sulfide, and Their Derived Species." Chem. Res. Toxicol., 25, 769-793 (2012)
    78. 施敏,半導體元件物理與製作技術,交大出版社 (2010)
    79. W. Deng1, L. Yang, D. Fujita1, H. Nejoh1 and C. Bai, “Silver ions adsorbed to self-assembled monolayers of alkanedithiols on gold surfaces form Ag–dithiol–Au multilayer structures” J. Appl. Phys. A. ,71, 639-642(2000).
    80. M. Venkataramanan, S. Ma, and T. Pradeep, "3D Monolayers of 1,4-Benzenedimethanethiol on Au and Ag clusters: distinct difference in adsorption geometry with the corresponding 2D monolayers." J. Colloid Interface Sci., 216, 134-142 (1999)
    81. M. Farrag, M. Thämer, M. Tschurl, T. Bürgi and U. Heiz, " Preparation and Spectroscopic Properties of Monolayer-Protected Silver Nanoclusters." J. Phys. Chem. C, 116, 8034-8043 (2012)
    82. W. Deng, L. Yang, D. Fujita, H. Nejoi and C. Bai, " Silver ions adsorbed to self-assembled monolayers of alkanedithiols on gold surfaces form Ag–dithiol–Au multilayer structures." J. Appl. Phys. A, 71, 639-642 (2000)
    83. J. Fukuto, S. Carrington, D. Tantillo, J. Harrison, L. Ignarro, B. Freeman, A. Chen and D. Wink, " Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen,Hydrogen Sulfide, and Their Derived Species." Chem. Res. Toxicol., 25, 769-793 (2012)
    84. 林秉頡,“自組裝烷基雙硫醇修飾金/砷化鎵蕭特基二極體示氮氧化物感測器之研究”,成功大學化工系論文(2010)

    下載圖示 校內:2014-09-07公開
    校外:2014-09-07公開
    QR CODE