簡易檢索 / 詳目顯示

研究生: 鄭詠璇
Cheng, Yung-Hsuan
論文名稱: 天然物抑制ROS和發炎體活化來減緩農藥引起之過敏性接觸性皮膚炎
Natural substances inhibit ROS and inflammasome activation to reverse pesticide-induced allergic contact dermatitis
指導教授: 王應然
Wang, Ying-Jan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 過敏性接觸性皮膚炎四氯異苯睛先天免疫系統發炎作用紫檀芪
外文關鍵詞: allergic contact dermatitis (ACD), Chlorothalonil, Innate immune system, Inflammation, Pterostilbene
相關次數: 點閱:89下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今農業發達,為了提高作物經濟效益,農藥於精緻農業中不可或缺,然而當皮膚接觸到農藥時可能會造成皮膚搔癢、紅腫,而引發過敏性接觸性皮膚炎(ACD)。在ACD的誘發機制涉及先天免疫系統及後天免疫系統,已有許多文獻證實致敏原於後天免疫系統的作用機轉,但於先天免疫系統中的調控機制尚未清晰,因此本研究目的為探討台灣常見農藥Chlorothalonil是否可以誘發ACD,並了解其誘發ACD之先天免疫系統中細胞之間的調控與分子機轉的改變,如在農藥刺激下細胞產生的自噬作用(Autophagy)和細胞凋亡(Apoptosis),並使用紫檀芪(Pterostilbene)作為預防策略,探討是否可以緩解農藥對皮膚所產生的損傷及ACD發炎症狀。於體內 (in vivo)試驗,本研究使用BALB/c小鼠暴露於農藥Chlorothalonil (0.24%)與農藥Captan (0.24%),並擇一合併管餵紫檀芪 (100mg/kg),分別進行局部淋巴結試驗 (Local lymph node assay)和ACD動物模型。而在體外試驗中 (in vitro),則使用人類角質形成細胞 (HaCaT)與人類單核球細胞 (THP-1)暴露於農藥下,探討農藥誘發ACD之先天免疫系統中細胞的反應與分子機轉的調控。在LLNA動物實驗中,農藥Chlorothalonil與農藥Captan均有潛力作為致敏物質,且Chlorothalonil對皮膚刺激反應強烈;而在ACD動物模型中,更進一步證實農藥Chlorothalonil為致敏物質之一,可以誘導產生過敏性接觸性皮膚炎,使暴露之皮膚產生紅腫及發炎現象,其表皮明顯增厚且淋巴球浸潤嚴重,但給予紫檀芪可有效緩解Chlorothalonil所誘發的ACD。於細胞實驗中,細胞在農藥Chlorothalonil的暴露下其存活率顯著下降並具有劑量效應關係,並可觀察到NLRP3發炎體、發炎作用途徑、細胞凋亡與細胞自噬相關蛋白,以及ROS的表現量上升,表示Chlorothalonil於先天免疫中可藉由活化NLRP3發炎體釋放發炎性細胞因子,造成皮膚發炎,並且誘導產生細胞凋亡及自噬作用來造成皮膚的嚴重損傷。本研究證實Chlorothalonil會誘發ACD,並針對先天免疫系統進行進一步的了解Chlorothalonil的暴露對皮膚造成損傷及產生發炎作用之分子機轉,並證實紫檀芪可以有效減緩ACD發炎的症狀和對皮膚的傷害,提供未來預防ACD的新策略。

    Recently, agriculture is developed, and pesticides are essential in precision agriculture. However, there are itching, redness, and swelling of the skin caused by contact with pesticides, which can induce allergic contact dermatitis (ACD). The mechanism of ACD involves the innate immune system and the adaptive immunity system. Many literatures have confirmed that the allergens play a role in the adaptive immune system, but the regulatory mechanism in the innate immune system is not clear. Therefore, the present study is to investigate whether Chlorothalonil, a common pesticide in Taiwan, can induce ACD, and to understand the molecular mechanism of the innate immune system that causing ACD, cells interaction and response (eg, autophagy and apoptosis). And pterostilbene was used as prevention stratagy to study whether it can reverse the skin damage caused by pesticides and the symptoms of ACD inflammation. In in vivo study, BALB/c mice were exposed to the pesticide Chlorothalonil (0.24%) and Captan (0.24%), and choose one combined with Pterostilbene (PT, 100mg/kg) by oral administration in local lymph node assay (LLNA) and ACD animal model. In in vitro experiments, HaCaT and THP-1 cells were exposed to pesticide Chlorthalonil, to study the molecular mechanism of cells response and regulation in the innate immune system during the process of induced-ACD. In LLNA animal experiments, both pesticides Chlorothalonil and Captan have potential as allergens, especially, a strong response to skin irritation by Chlorothalonil treatment. In ACD animal model, the pesticide Chlorothalonil is one of allergens, which induced allergic contact dermatitis, and caused skin swollen and inflammation. The epidermis of the skin was significantly thickened and the lymphocytes were infiltrated heavily, but the administration of pterostilbene effectively alleviated all of them in ACD. In in vitro experiments, HaCaT and THP-1 cells treated with chlorthalonil significantly reduced the cell viability in concentration-dependent. The expression of NLRP3 inflammasome, the protein of the inflammatory pathway, cell apoptosis and aurophagy, and the production of ROS was observed increased. These results indicated that chlorthalonil might cause skin inflammation by releasing inflammatory cytokines from activation of NLRP3 inflammasome in innate immunity, and induce apoptosis and autophagy to cause skin damage.This study confirmed that Chlorothalonil induced ACD, and further explored the molecular mechanism of skin damage and inflammatory effects in the innate immune system. We also confirmed that pterostilbene effectively reduced the symptoms of ACD inflammation and damage in the skin, and provided a new ACD prevention strategy in the future.

    第一章、序論 p.1 第二章、文獻回顧 p.2 第一節、環境過敏原與農藥毒性(Pesticide toxicity) p.2 第二節、接觸性皮膚炎(Contact Dermatitis, CD) p.5 第三節、過敏性接觸性皮膚炎(Allergic Contact Dermatitis, ACD) p.6 第四節、先天免疫系統(Innate immune system)與過敏性接觸性皮膚炎 p.7 第五節、自噬作用 (Autophagy) p.13 第六節、天然物質 (Natural products) ─ 紫檀芪 (Pterostillbene) p.16 第三章、研究目的 p.18 第四章、研究材料與方法 p.19 第一節 研究材料 p.19 (一) 細胞株:p.19 (二) 儀器: p.19 (三) 試劑與耗材: p.20 第二節 研究方法與實驗步驟 p.24 (一) 動物實驗: p.24 1. 動物飼育管理 p.24 2. 動物馴化及檢疫 p.24 3. 【局部淋巴結試驗Local lymph node assay】 p.25 4. 【預防過敏性接觸性皮膚炎之動物模型策略】 p.25 5. 蘇木紫伊紅染色 (Hematoxylin & Eosin Staining) p.26 6. 免疫組織化學染色法 (immunohistochemistry, IHC) p.26 (二) 細胞實驗: p.27 1. 細胞解凍 p.27 2. 細胞冷凍 p.27 3. 細胞培養 (Cell culture) p.27 4. 細胞存活率 (Cell viability) p.28 5. 氧化壓力分析 (DCFH-DA assay) p.28 6. 細胞凋亡分析 (Apoptosis assay) p.29 7. 自噬作用分析 (Autophagy assay) p.29 8. 細胞激素 (Cytokine) 分析 p.29 9. 免疫螢光染色 (Immunofluorescence) p.30 10. 西方墨點法 (Western blot) p.30 11. 反轉錄聚合酶鏈反應(RT-PCR) p.31 12. 統計分析 p.32 第五章、研究架構 p.33 第六章、實驗結果 p.37 第一節、農藥Glyphisate、Captan與Chlorothalonil暴露之細胞毒性試驗 p.37 第二節、農藥Captan與Chlorothalonil其皮膚致敏潛力之動物模式 p.37 第三節、農藥Chlorothalonil刺激人類角質形成細胞HaCaT產生內質網壓力(ER stress)、 NLRP3發炎體活化並促進發炎作用 p.38 第四節、農藥Chlorothalonil誘發HaCaT細胞產生ROS,並造成細胞死亡(Apoptosis) p.40 第五節、農藥Chlorothalonil刺激人類單核球細胞THP-1產生內質網壓力(ER stress)、NLRP3發炎體活化並促進發炎作用 p.41 第六節、農藥Chlorothalonil誘發HaCaT與THP-1細胞產生自噬作用(Autophagy) p.42 第七節、利用局部淋巴結試驗進行紫檀芪(Pterostilbene)預防前驅研究(Pilot study) p.43 第八節、天然物紫檀芪 (Pterostillbene)合併農藥Chlorothalonil減緩過敏性接觸性皮膚炎(ACD)之預防策略動物模式 p.44 第九節、紫檀芪(Pterostillbene)抑制農藥Chlorothalonil誘發HaCaT細胞生成ROS p.46 第七章、討論 p.47 第八章、結論及建議 p.55 第九章、參考文獻 p.57 圖目錄 圖一、草甘磷 (Glyphosate)化學結構(de Avila et al. 2017) p.3 圖二、蓋普丹 (Captan)化學結構(Arce et al. 2010) p.4 圖三、四氯異苯腈 (Chlorothalonil)化學結構(Boman et al. 2000) p.4 圖四、ICD與ACD病理生理機制(Leonard and Guttman-Yassky 2019) p.6 圖五、過敏性接觸性皮膚炎誘發機制(Gober and Gaspari 2008) p.7 圖六、樹突細胞於先天免疫系統中活化路徑(Honda et al. 2013) p.8 圖七、先天免疫系統活化路徑(Kaplan et al. 2012) p.9 圖八、發炎體活化路徑(Shao et al. 2015)。 p.10 圖九、自噬作用形成過程。(Sil et al. 2018b) p.14 圖十、自噬作用 (Autophagy)與自噬功能障礙 (Autophagy dysfunction) (Saitoh and Akira 2016)。 p.15 圖十一、紫檀芪 (Pterostilene)化學結構及功效(Kosuru et al. 2016a) p.16 Figure 1. The cell viability of HaCaT cells was decreased when cells exposed to pesticides. p.63 Figure 2. Results of the LLNA animal model by different pesticides. p.65 Figure 3. Chlorothalonil treatment induced ER stress in HaCaT cells. p.66 Figure 4. The effect of Chlorothalonil induced inflammation activation pathway in HaCaT cells, up-regulating the inflammation related protein p-NF-κB, NLRP3 and caspase-1. p.67 Figure 5. Chlorothalonil increased the expression of TNF-α, IL-1α, IL-1β- mRNA in HaCaT cells. p.69 Figure 6. Chlorothalonil increased ROS generation in HaCaT cells in a time-dependent manner. p.70 Figure 7. The pesticide chlorothalonil induced apoptotic cell death. p.71 Figure 8. Effect of Chlorothalonil-induced ER stress in THP-1 cells. p.72 Figure 9. The effect of Chlorothalonil induced inflammation activation pathway in THP-1 cells, which was similar to HaCaT cells. p.73 Figure 10. Effect of Chlorothalonil on TNF-α, IL-1α and IL-1-β production in THP-1 cells. p.75 Figure 11. Chlorothalonil-altered autophagic flux in HaCaT and THP-1 cells by regulating the autophagic and lysosomal proteins. p.78 Figure 12. Results of the LLNA animal model by treatment chlorothalonil and pterostilbene. p.80 Figure 13. Results of ACD animal model by treatment chlorothalonil and pterostilbene. p.85 Figure 14. The pesticide chlorothalonil induced ROS in HaCaT cell and reduced when combined pterostilbene. p.87 Supplemental Figure S1. The cell viability of THP-1 cells was decreased when cells exposed to pesticide chlorothalonil. p.88

    Adam C, Wohlfarth J, Haussmann M, Sennefelder H, Rodin A,
    Maler M, et al. 2017. Allergy-inducing chromium
    compounds trigger potent innate immune stimulation via
    ROS-dependent inflammasome activation. J Invest Dermatol
    137:367-376.
    Ale IS, Maibacht HA. 2010. Diagnostic approach in
    allergic and irritant contact dermatitis. Expert Rev
    Clin Immunol 6:291-310.
    Antony M, Shukla Y, Mehrotra NK. 1994. Preliminary
    carcinogenic and cocarcinogenic studies on captan
    following topical exposure in mice. Bull Environ Contam
    Toxicol 52:203-211.
    Arce GT, Gordon EB, Cohen SM, Singh P. 2010. Genetic
    toxicology of folpet and captan. Crit Rev Toxicol
    40:546-574.
    Baig S, Seevasant I, Mohamad J, Mukheem A, Huri HZ,
    Kamarul T. 2016. Potential of apoptotic pathway-targeted
    cancer therapeutic research: Where do we stand? Cell
    Death Dis 7:e2058.
    Baron O, Fanto M. 2018. Karyoptosis: A novel type of cell
    death caused by chronic autophagy inhibition. Autophagy
    14:722-723.
    Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald
    K, Speert D, et al. 2009. Cutting edge: NF-kappaB
    activating pattern recognition and cytokine receptors
    license NLRP3 inflammasome activation by regulating
    NLRP3 expression. J Immunol 183:787-791.
    Berthet A, Bouchard M, Vernez D. 2012. Toxicokinetics of
    captan and folpet biomarkers in dermally exposed
    volunteers. J Appl Toxicol 32:202-209.
    Boman A, Montelius J, Rissanen RL, Liden C. 2000.
    Sensitizing potential of chlorothalonil in the guinea
    pig and the mouse. Contact Dermatitis 43:273-279.
    Botbol Y, Guerrero-Ros I, Macian F. 2016. Key roles of
    autophagy in regulating T-cell function. Eur J Immunol
    46:1326-1334.
    Briken V. 2012. "With a little help from my friends":
    Efferocytosis as an antimicrobial mechanism. Cell Host
    Microbe 12:261-263.
    Brys AK, Rodriguez-Homs LG, Suwanpradid J, Atwater AR,
    MacLeod AS. 2019. Shifting paradigms in allergic contact
    dermatitis: The role of innate immunity. J Invest
    Dermatol Jan;140(1):21-28.
    Carroll B, Nelson G, Rabanal-Ruiz Y, Kucheryavenko O,
    Dunhill-Turner NA, Chesterman CC, et al. 2017.
    Persistent mTORC1 signaling in cell senescence results
    from defects in amino acid and growth factor sensing. J
    Cell Biol 216:1949-1957.
    Chen RJ, Lee YH, Yeh YL, Wang YJ, Wang BJ. 2016. The
    roles of autophagy and the inflammasome during
    environmental stress-triggered skin inflammation. Int J
    Mol Sci 17:2063.
    Chen RJ, Lee YH, Yeh YL, Wu WS, Ho CT, Li CY, et al.
    2017. Autophagy-inducing effect of pterostilbene: A
    prospective therapeutic/preventive option for skin
    diseases. J Food Drug Anal 25:125-133.
    Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, Lee SJ, et al.
    2010. Autophagy protein microtubule-associated protein 1
    light chain-3b (LC3B) activates extrinsic apoptosis
    during cigarette smoke-induced emphysema. Proc Natl Acad
    Sci U S A 107:18880-18885.
    Daley D, Mani VR, Mohan N, Akkad N, Pandian G, Savadkar
    S, et al. 2017. NLRP3 signaling drives macrophage-
    induced adaptive immune suppression in pancreatic
    carcinoma. J Exp Med 214:1711-1724.
    de Avila RI, Teixeira GC, Veloso D, Moreira LC, Lima EM,
    Valadares MC. 2017. In vitro assessment of skin
    sensitization, photosensitization and phototoxicity
    potential of commercial glyphosate-containing
    formulations. Toxicol In Vitro 45:386-392.
    Doran AC, Yurdagul A, Jr., Tabas I. 2019. Efferocytosis
    in health and disease. Nat Rev Immunol:DOI:
    10.1038/s41577-41019-40240-41576.
    Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D,
    Deretic V. 2011. Autophagy-based unconventional
    secretory pathway for extracellular delivery of IL-
    1beta. EMBO J 30:4701-4711.
    Elie-Caille C, Heu C, Guyon C, Nicod L. 2010.
    Morphological damages of a glyphosate-treated human
    keratinocyte cell line revealed by a micro- to nanoscale
    microscopic investigation. Cell Biol Toxicol 26:331-339.
    Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San
    Pedro JM, Cecconi F, et al. 2017. Molecular definitions
    of autophagy and related processes. EMBO J 36:1811-1836.
    Genin M, Clement F, Fattaccioli A, Raes M, Michiels C.
    2015. M1 and M2 macrophages derived from THP-1 cells
    differentially modulate the response of cancer cells to
    etoposide. BMC Cancer 15:577.
    George J, Prasad S, Mahmood Z, Shukla Y. 2010. Studies on
    glyphosate-induced carcinogenicity in mouse skin: A
    proteomic approach. J Proteomics 73:951-964.
    George J, Shukla Y. 2013. Emptying of intracellular
    calcium pool and oxidative stress imbalance are
    associated with the glyphosate-induced proliferation in
    human skin keratinocytes HaCaT cells. ISRN Dermatol
    2013:825180.
    Gober MD, Gaspari AA. 2008. Allergic contact dermatitis.
    Curr Dir Autoimmun 10:1-26.
    Gorbachev AV, Fairchild RL. 2004. Cd40 engagement
    enhances antigen-presenting langerhans cell priming of
    IFN-gamma-producing CD4+ and CD8+ T cells independently
    of IL-12. J Immunol 173:2443-2452.
    Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. 2016. The
    unfolded protein response in immunity and inflammation.
    Nat Rev Immunol 16:469-484.
    Guo YL, Wang Bj Fau - Lee CC, Lee Cc Fau - Wang JD, Wang
    JD. 1996. Prevalence of dermatoses and skin
    sensitisation associated with use of pesticides in fruit
    farmers of southern Taiwan. Occup Environ Med 53(6):427-
    431.
    Hakanen E, Lehtimaki J, Salmela EA-Ohoo, Tiira K,
    Anturaniemi J, Hielm-Bjorkman A, et al. 2018. Urban
    environment predisposes dogs and their owners to
    allergic symptoms. Sci Rep 8(1):1585.
    Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR.
    2017. LC3-associated phagocytosis and inflammation. J
    Mol Biol 429:3561-3576.
    Heras-Mendaza F, Casado-Farinas I Fau - Paredes-Gascon M,
    Paredes-Gascon M Fau - Conde-Salazar L, Conde-Salazar L.
    2008. Erythema multiforme-like eruption due to an
    irritant contact dermatitis from a glyphosate pesticide.
    Contact Dermatitis 59(1):54-56.
    Heu C, Elie-Caille C, Mougey V, Launay S, Nicod L. 2012.
    A step further toward glyphosate-induced epidermal cell
    death: Involvement of mitochondrial and oxidative
    mechanisms. Environ Toxicol Pharmacol 34(2):144-153.
    Hirano S Fau - Yoshikawa K, Yoshikawa K. 1982. Patch
    testing with european and american standard allergens in
    japanese patients. Contact Dermatitis 8(1):48-50.
    Honda T, Egawa G, Grabbe S, Kabashima K. 2013. Update of
    immune events in the murine contact hypersensitivity
    model: Toward the understanding of allergic contact
    dermatitis. J Invest Dermatol 133:303-315.
    Honda T, Kabashima K. 2016. Novel concept of iSALT
    (inducible skin-associated lymphoid tissue) in the
    elicitation of allergic contact dermatitis. Proc Jpn
    Acad Ser B Phys Biol Sci 92:20-28.
    Hosoki K, Gandhe R, Boldogh I, Sur S. 2014. Reactive
    oxygen species (ROS) and allergic responses. In: Systems
    biology of free radicals and antioxidants, (Laher I,
    ed). Berlin, Heidelberg:Springer Berlin Heidelberg,
    3239-3266.
    Hu Y, Xu Z, Jiang F, Li S, Liu S, Wu M, et al. 2019.
    Relative impact of meteorological factors and air
    pollutants on childhood allergic diseases in Shanghai,
    China. Sci Total Environ 706:135975.
    Hua Y, Shen M, McDonald C, Yao Q. 2018. Autophagy
    dysfunction in autoinflammatory diseases. J Autoimmun
    88:11-20.
    Jakasa I, Thyssen JP, Kezic S. 2018. The role of skin
    barrier in occupational contact dermatitis. Exp Dermatol
    27:909-914.
    Jeong JS, Kim SR, Cho SH, Lee YC. 2017. Endoplasmic
    reticulum stress and allergic diseases. Curr Allergy
    Asthma Rep 17:82.
    Jing K, Lim K. 2012. Why is autophagy important in human
    diseases? Exp Mol Med 44(2):69-72.
    Kaplan DH, Igyarto BZ, Gaspari AA. 2012. Early immune
    events in the induction of allergic contact dermatitis.
    Nat Rev Immunol 12:114-124.
    Kojima Y, Weissman IL, Leeper NJ. 2017. The role of
    efferocytosis in atherosclerosis. Circulation 135:476-
    489.
    Kosuru R, Rai U, Prakash S, Singh A, Singh S. 2016a.
    Promising therapeutic potential of pterostilbene and its
    mechanistic insight based on preclinical evidence. Eur J
    Pharmacol 789:229-243.
    Kosuru R, Rai U, Prakash S, Singh A, Singh S. 2016b.
    Promising therapeutic potential of pterostilbene and its
    mechanistic insight based on preclinical evidence. Eur J
    Pharmacol 789:229-243.
    Leclerc GM, Zheng S, Leclerc GJ, DeSalvo J, Swords RT,
    Barredo JC. 2016. The NEDD8-activating enzyme inhibitor
    pevonedistat activates the eIF2alpha and mTOR pathways
    inducing UPR-mediated cell death in acute lymphoblastic
    leukemia. Leuk Res 50:1-10.
    Lensen G, Jungbauer F, Goncalo M, Coenraads PJ. 2007.
    Airborne irritant contact dermatitis and conjunctivitis
    after occupational exposure to chlorothalonil in
    textiles. Contact Dermatitis 57:181-186.
    Lensen G, Coenraads PJ, Jungbauer F, Schuttelaar ML.
    2011. Contact dermatitis caused by chlorothalonil on
    imported roses: Irritant or allergic reaction? Contact
    Dermatitis 65:50-51.
    Leonard A, Guttman-Yassky E. 2019. The unique molecular
    signatures of contact dermatitis and implications for
    treatment. Clin Rev Allergy Immunol 56:1-8.
    Li W, Liu F, Wang J, Long M, Wang Z. 2018. MicroRNA-21-
    mediated inhibition of mast cell degranulation involved
    in the protective effect of berberine on 2,4-
    dinitrofluorobenzene-induced allergic contact dermatitis
    in rats via p38 pathway. Inflammation 41:689-699.
    Lisi P Fau - Caraffini S, Caraffini S Fau - Assalve D,
    Assalve D. 1986. A test series for pesticide dermatitis.
    Contact Dermatitis 15(5):266-269.
    Liu JN, Suh DH, Trinh HK, Chwae YJ, Park HS, Shin YS.
    2016. The role of autophagy in allergic inflammation: A
    new target for severe asthma. Exp Mol Med 48:e243.
    Maibach HI. 1986. Irritation, sensitization,
    photoirritation and photosensitization assays with a
    glyphosate herbicide. Contact Dermatitis 15:152-156.
    Martin SF, Rustemeyer T, Thyssen JP. 2018. Recent
    advances in understanding and managing contact
    dermatitis. F1000Res 7:F1000 Faculty Rev-1810.
    Martinon F, Burns K, Tschopp J. 2002. The inflammasome.
    Molecular Cell 10:417-426.
    Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. 2014.
    Reactive oxygen species in inflammation and tissue
    injury. Antioxid Redox Signal 20:1126-1167.
    Mizushima N, Levine B Fau - Cuervo AM, Cuervo Am Fau -
    Klionsky DJ, Klionsky DJ. 2008. Autophagy fights disease
    through cellular self-digestion. Nature 451(7182):1069-
    1075.
    Mizushima N, Yoshimori T Fau - Ohsumi Y, Ohsumi Y. 2011.
    The role of Atg proteins in autophagosome formation.
    Annu Rev Cell Dev Biol 27:107-132.
    Napoletano F, Baron O, Vandenabeele P, Mollereau B, Fanto
    M. 2018. Intersections between regulated cell death and
    autophagy. Trends Cell Biol 29(4):323-338.
    Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B,
    van der Meer JH, et al. 2009. Differential requirement
    for the activation of the inflammasome for processing
    and release of IL-1beta in monocytes and macrophages.
    Blood 113:2324-2335.
    Nguyen V, Simon L, Jaqua E. 2016. Allergic dermatoses.
    Prim Care 43:433-449.
    Onami K, Kimura Y, Ito Y, Yamauchi T, Yamasaki K, Aiba S.
    2014. Nonmetal haptens induce ATP release from
    keratinocytes through opening of pannexin hemichannels
    by reactive oxygen species. J Invest Dermatol
    134(7):1951-1960.
    Osorio F, Lambrecht B, Janssens S. 2013. The UPR and lung
    disease. Semin Immunopathol 35:293-306.
    Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B,
    Singaravelu R, Liao X, et al. 2017. microRNA-33
    regulates macrophage autophagy in atherosclerosis.
    Arterioscler Thromb Vasc Biol 37:1058-1067.
    Pandey KB, Rizvi SI. 2009. Plant polyphenols as dietary
    antioxidants in human health and disease. Oxid Med Cell
    Longev 2(5):270-278.
    Parzych KR, Klionsky DJ. 2014. An overview of autophagy:
    Morphology, mechanism, and regulation. Antioxid Redox
    Signal 20:460-473.
    Paulsen E. 1998. Occupational dermatitis in Danish
    gardeners and greenhouse workers (ii). Etiological
    factors. Contact Dermatitis 38:14-19.
    Penagos H, Ruepert C Fau - Partanen T, Partanen T Fau -
    Wesseling C, Wesseling C. 2004. Pesticide patch test
    series for the assessment of allergic contact dermatitis
    among banana plantation workers in panama. Dermatitis
    15(3):137-145.
    Rafei-Shamsabadi DA, van de Poel S, Dorn B, Kunz S,
    Martin SF, Klose CSN, et al. 2018. Lack of type 2 innate
    lymphoid cells promotes a type i-driven enhanced immune
    response in contact hypersensitivity. J Invest Dermatol
    138:1962-1972.
    Rodriguez-Luna A, Avila-Roman JA-O, Oliveira H, Motilva
    V, Talero EA-OX. 2019. Fucoxanthin and rosmarinic acid
    combination has anti-inflammatory effects through
    regulation of NLRP3 inflammasome in UVB-exposed HaCaT
    keratinocytes. Mar Drugs 17(8).
    Saitoh T, Akira S. 2016. Regulation of inflammasomes by
    autophagy. J Allergy Clin Immunol 138:28-36.
    Sano R, Reed JC. 2013. ER stress-induced cell death
    mechanisms. Biochim Biophys Acta 1833:3460-3470.
    Sastre B, Canas JA, Rodrigo-Munoz JM, Del Pozo V. 2017.
    Novel modulators of asthma and allergy: Exosomes and
    micrornas. Front Immunol 8:826.
    Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. 2015. NLRP3
    inflammasome and its inhibitors: A review. Front
    Pharmacol 6:262.
    Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H. 2015.
    Resveratrol nanoformulation for cancer prevention and
    therapy. Ann N Y Acad Sci 1348:20-31.
    Sil P, Muse G, Martinez J. 2018a. A ravenous defense:
    Canonical and non-canonical autophagy in immunity. Curr
    Opin Immunol 50:21-31.
    Sil P, Wong SW, Martinez J. 2018b. More than skin deep:
    Autophagy is vital for skin barrier function. Front
    Immunol 9:1376.
    Silvestre MC, Sato MN, Reis V. 2018. Innate immunity and
    effector and regulatory mechanisms involved in allergic
    contact dermatitis. An Bras Dermatol 93:242-250.
    Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B,
    Slominski RM, Steketee JD. 2012. Sensing the
    environment: Regulation of local and global homeostasis
    by the skin's neuroendocrine system. Adv Anat Embryol
    Cell Biol 212:v, vii, 1-115.
    Sukseree S, Eckhart L, Tschachler E, Watanapokasin R.
    2013. Autophagy in epithelial homeostasis and defense.
    Front Biosci (Elite Ed) 5:1000-1010.
    Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil
    R, Istace F, et al. 2017. Glyphosate toxicity and
    carcinogenicity: A review of the scientific basis of the
    european union assessment and its differences with iarc.
    Arch Toxicol 91:2723-2743.
    Tartey S, Kanneganti TD. 2019. Differential role of the
    NLRP3 inflammasome in infection and tumorigenesis.
    Immunology 156:329-338.
    Toby Mathias CG. 1989. Contact dermatitis and workers'
    compensation: Criteria for establishing occupational
    causation and aggravation. Journal of the American
    Academy of Dermatology 20:842-848.
    Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh
    MR, et al. 2018. Environmental and health effects of the
    herbicide glyphosate. Sci Total Environ 616-617:255-268.
    Wang BJ, Guo YL, Chang HY, Sheu HM, Pan MH, Lee YH, et
    al. 2010a. N-acetylcysteine inhibits chromium
    hypersensitivity in coadjuvant chromium-sensitized
    albino guinea pigs by suppressing the effects of
    reactive oxygen species. Exp Dermatol 19:e191-200.
    Wang BJ, Sheu HM, Guo YL, Lee YH, Lai CS, Pan MH, et al.
    2010b. Hexavalent chromium induced ROS formation, akt,
    NF-kappaB, and MAPK activation, and TNF-alpha and IL-
    1alpha production in keratinocytes. Toxicol Lett
    198:216-224.
    Wang C, Yuan J, Wu HX, Chang Y, Wang QT, Wu YJ, et al.
    2015. Total glucosides of paeony inhibit the
    inflammatory responses of mice with allergic contact
    dermatitis by restoring the balanced secretion of
    pro-/anti-inflammatory cytokines. Int Immunopharmacol
    24:325-334.
    Wang K. 2015. Autophagy and apoptosis in liver injury.
    Cell Cycle 14:1631-1642.
    Wu J, Liu B, Mao W, Feng S, Yao Y, Bai F, et al. 2019.
    Prostaglandin E2 regulates activation of mouse
    peritoneal macrophages by staphylococcus aureus through
    toll-like receptor 2, toll-like receptor 4, and NLRP3
    inflammasome signaling. J Innate Immun 29:1-16.
    Xia X, Lei L, Qin W, Wang L, Zhang G, Hu J. 2018. GCN2
    controls the cellular checkpoint: Potential target for
    regulating inflammation. Cell Death Discov 4:20.
    Xiao Z, Xiao S, Zhang Y, Pan T, Ouyang B. 2018. The anti-
    inflammatory effect of fructus kochiae on allergic
    contact dermatitis rats via pERK1/2/TLR4/NF-kappaB
    pathway activation. Evid Based Complement Alternat Med
    2018:1096920.
    Yu CL, Yang SF, Hung TW, Lin CL, Hsieh YH, Chiou HL.
    2019. Inhibition of eIF2alpha dephosphorylation
    accelerates pterostilbene-induced cell death in human
    hepatocellular carcinoma cells in an ER stress and
    autophagy-dependent manner. Cell Death Dis 10:418.
    Yu T, Zuber J, Li J. 2015. Targeting autophagy in skin
    diseases. J Mol Med (Berl) 93:31-38.
    Zheng J, Cheng J, Zheng S, Feng Q, Xiao X. 2018.
    Curcumin, a polyphenolic curcuminoid with its protective
    effects and molecular mechanisms in diabetes and
    diabetic cardiomyopathy. Front Pharmacol 9:472.
    Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour
    S, Wong J, et al. 2016. NF-kappaB restricts inflammasome
    activation via elimination of damaged mitochondria. Cell
    164:896-910.
    方麗萍. 2009. 2008年台灣農藥排行榜.
    楊俊宏, 林天宇, 蔡韙任. 2016. 四氯異苯腈、菲克利與益達胺三種農
    藥之多重混合毒性評估. 臺灣農藥科學:1-23.

    下載圖示 校內:2025-02-18公開
    校外:2025-02-18公開
    QR CODE