簡易檢索 / 詳目顯示

研究生: 顏永霖
YAN, YONG-LIN
論文名稱: 溶劑與濃度效應對一末端帶有磷脂質之仿生性官能基自組裝單分子層結構影響 :排列性質及血液相容性之界面探討
Solvent and concentration effect on the structure of biomimetic phosphorylcholine-terminated self-assembled monolayers: Studies on packing quality, orientation and hemocompatibility
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 138
中文關鍵詞: 仿細胞膜結構磷脂質自組裝單分子層溶劑效應濃度效應排列現象血液相容性長時間穩定性
外文關鍵詞: cell membrane mimicking, phosphorylcholine, self-assembled monolayers, solvent effect, concentration effect, orientation, platelet compatibility, stability
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於自組裝單分子層的表面修飾技術製備簡易且可廣泛選用吸附物,因此在改質金屬表面性質時被視為一重要的技術。本研究利用一末端帶有仿生性亦具有雙電性質之磷脂質(PC)硫醇分子[ HS-(CH2)11-P(=O)(-O-)-O-CH2CH2N+-(CH3)3]製作自組裝單分子層,同時也利用不同的表面分析技術研究其性質。實驗變因包含三種溶劑(乙醇、甲醇以及水)與三種濃度(2mM、1mM、0.1mM)下製備不同成長條件之含磷脂質自組裝單分子層。表面分析方式包括靜態接觸角量測(CA)、化學分析電子能譜分布(XPS)、一次反射式傅立葉轉換光譜圖(RAIRS)、循環伏安法(CV)、交流阻抗頻譜分析(EIS)、界達電位量測(Zeta potential)。此外藉由在PBS緩衝液中保存35天以了解表面的穩定性,而利用血小板吸附實驗更可決定各種表面的血小板吸附行為。
    表面分析結果顯示整體自組裝單分子層的排列品質以及末端磷脂質方向性受到成長環境中溶劑與濃度的差異影響。甚至溶劑與濃度效應也會影響到長時間穩定性以及血小板吸附行為。
    在此我們提出假設,成長濃度、溶劑分子大小以及溶劑分子本身結構對稱性進而和磷脂質間形成偶極力的程度皆影響整體自組裝單分子層的結構以及末端磷脂質之方向性;以乙醇與甲醇為溶劑的條件下製備的自組裝單分子層時,末端磷脂質官能基較容易向外層延伸而使得在XPS實驗中觀察到較高的氮磷比;此外如乙醇與甲醇這些較大的溶劑分子以及結構使得溶劑本身能形成偶極力的能力較差,造成表面有較為無序的排列現象同時也會使得接觸角值高於水製備的樣品;相反的水分子本身較小且形成偶極力的能力也較強,因此促使硫醇分子間的-(PO3)-與-N(CH3)3+藉由靜電作用力而緊密連結在一起,而這種現象會造成末端PC官能基傾向向分子層之內層延伸同時也觀察到較低的氮磷比,由於排列現象的差異而造成水製備的樣品具有較為有序的排列以及較低的接觸角值。
    濃度效應在乙醇與甲醇為溶劑的條件下製備的自組裝單分子層時,隨著成長濃度降低經由電化學分析以及接觸角量測時觀察到表面呈現較為親水以及較多缺陷的產生,這可能是因為濃度降低時造成分子間作用力較不複雜所產生的結果。此外,以水製備的表面當成長濃度下降時卻會使得排列更加無序,推測是因為分子間的靜電作用力降低以致無法在成長自組裝酖分子層時穩定排列結構,而接觸角值也說明濃度降低會有較為疏水之表面也與此現象息息相關。

    Self-assembled monolayers (SAMs) technique has been recognized as an important surface modification method for tailoring the surface properties of metallic substrate due to its ease of preparation and wide choice of organic adsorbents. In this study, the structure of self-assembled monolayer formed by the alkanethiol with a cell-membrane mimicking zwitterionic terminal functionality, phosphorylchoilne [PC, HS-(CH2)11-P(=O)(-O-)-O-CH2CH2N+-(CH3)3], was investigated by various surface characterization techniques. Three different solvents (namely; methanol, ethanol and water) and three different alkanethiol concentrations (2 mM, 1mM and 0.1mM) were used to prepare various PC-terminated SAMs. The surface analysis techniques utilized include static contact angle measurement (CA), X-ray photoelectron spectroscopy (XPS), reflection adsorption infrared spectroscopy (RAIRS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and electo-kinetic analyzer (EKA). In addition, the stability of these PC-terminated SAMs was analyzed after being preserved within phosphate buffer saline (PBS) for 35 days. The in vitro platelet adhesion assay was also performed to determine the platelet compatibility of these PC-terminated SAMs.
    Surface characterization results have indicated that the packing qualities and the orientation of PC terminal ends were affected by the solvent and the alkanethiol concentration used. Moreover, these two also affected the platelet compatibility and long-term stability of the PC-terminated SAMs.
    A hypothetical model was proposed, in which the solvent size and dipole interactive capability and symmetry would affect the packing quality as well as the orientation of the PC-terminal ends of the SAMs prepared using different solvents and concentrations. For those prepared using methanol and ethanol, the PC-terminal ends would likely to extend outwards, leading to higher N/P ratio noted in XPS analysis. In addition, the larger molecule size and less dipole interactive capability of these two solvent molecules would lead to less ordered SAMs’ structures, resulting more tilting and more exposure of the hydrocarbon backbone as indicated by the higher contact angle values than those prepared using water as the solvent. In contrast, the water molecules that are smaller and having more symmetric dipole interactive capability would more favor the inter-chain electrostatic interactions between the –(PO3)- and –N(CH3)3+ that were associated with neighboring thiol molecules. This would result in a more inwards extension of PC-terminal ends, as indicated by lower N/P ratios, and a more ordered and less-tilting hydrocarbon backbone structure as shown by a lower contact angle value.
    For those SAMs prepared with methanol and ethanol, the structure becomes less tilting as the thiol concentration was decreased, indicated by the decreasing contact angle value. This is likely due to the less complicated inter-chain interactions as the amount of solution thiol was deceased. On the other hand, for the SAMs prepared using water as the solvent, the structure become less-ordered as the thiol concentration was decreased, shown by the increase in hydrophobicity and more gauche conformation. This finding could be attributed to the decrease in electrostatic interactions that would stabilize the packing structure of these water-solvent-prepared PC-terminated SAMs.

    摘要 I Abstract III 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 第 1 章 前言 1 第 2 章 文獻回顧 4 2-1 自組裝單分子層(Self-Assembled Monolayers)與金屬基材(Substrate) 4 2-2 溶劑效應(Solvent Effect) 9 2-3 血液相容性之探討 14 2-3.1 血液的組成 14 2-3.2 血小板之機能(Platelet Functions) 15 2-3.3 凝血機制的探討 17 2-4 血液相容性材料 (Hemocompatible Materials) 23 2-5 細胞膜的結構 25 2-6 Synthesis of Zwitterionic PC-terminated thiol molecular 27 2-7 研究目的與動機 32 第 3 章 儀器原理 33 3-1 靜態接觸角 (Static Water Contact Angle) 33 3-2 電子能譜儀 (X-ray Photoelectron Spectroscopy , XPS) 34 3-3 循環伏安分析法 ( Cyclic Voltammetry, CV ) 37 3-4 交流阻抗頻譜分析法 (Elecrochemical Impedance Spectroscopy) 41 3-5 反射式傅立葉轉換紅外線光譜儀 (Fourier Transform Reflection Adsorption Infrared Spectroscopy, RAIRS ) 43 3-6 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 47 3-7 物理氣相沉積儀 (Physical vapor deposition, PVD) 50 3-8 場發式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FE-SEM) 51 3-9 Electro-Kinetic Analyzer與界達電位 (Zeta potential) 54 第 4 章 實驗方法 57 4-1 藥品與儀器清單 57 4-2 流程圖 61 4-3 合成步驟 62 4-3.1 Scheme 62 4-3.2 Synthesis of Diethyl 10-undecenylphosphonate (11-UP) 64 4-3.3 Synthesis of 11-undecenylphosphonic acid (11-UPA) 64 4-3.4 Synthesis of 11-undecenylphosphonyl choline ester (11-UPC) 65 4-3.5 Synthesis of 11-thioacetoundecylphosphonyl choline ester (AcSPC) 65 4-3.6 Synthesis of 11-mercaptoundecylphosphonyl choline ester (HSPC) 66 4-4 磷脂質硫醇分子之水解測試 (Hydrolysis Test of HSPC) 66 4-5 金基材準備 67 4-6 自組裝單分子層 (Self-Assembled Monolyers, SAMs)之形成 68 4-7 靜態接觸角之量測 (Static Water Contact Angle Measurement) 69 4-8 X-ray Photoelectron Spectroscopy (XPS)量測 69 4-9 PBS 35天保存 70 4-10 反射式傅立葉轉換紅外線光譜分析 (Fourier Transform Reflection Absorption Infrared Spectroscopy, RAIRS) 70 4-11 循環伏安法(Cyclic Voltammetry)與交流阻抗頻譜法(Electrochemical Impedance Spectroscopy)之電化學分析 71 4-12 血小板吸附實驗 (In vitro platelet adhesion) 72 4-13 Electro-Kinetic Analysis與界達電位 (Zeta poyential, ZP)量測 75 第 5 章 實驗結果 77 5-1 結構鑑定 77 5-1.1 11-UP (Diethyl 10-undecenylphosphonate) 77 5-1.2 11-UPA (11-undecenylphosphonic acid) 81 5-1.3 11-UPC(11-undecenylphosphonyl choline ester) 84 5-1.4 AcSPC (11-thioaceto-undecylphosphonyl choline) 88 5-1.5 HSPC (11-mercapto-undecy-phosphonyl choline ester) 92 5-2 磷脂質硫醇分子水解測試 (Hydrolysis test of HSPC) 95 5-3 Static Water Contact Angle Measurement (CA) 97 5-4 X-ray Photoelectron Spectroscopy (XPS) Analysis 100 5-4.1 Fresh prepared SAMs 100 5-4.2 After PBS 35 days preservation 102 5-5 Reflection Adsorption Infrared Spectroscopy (RAIRS) 108 5-6 Cyclic Voltametry (CV) 112 5-7 Electrochemical impedance spectroscopy (EIS) 114 5-8 血小板吸附實驗 118 5-9 Zeta potential 量測 121 第 6 章 討論 123 第 7 章 結論 132 參考文獻 133

    [1].何敏夫,”血液學”,合記圖書出版社,(1993)
    [2].莊文喜,”不同離子型之混合自我聚集性單分子層的表面性質與血小板吸附之研究”, 國立成功大學化工所博士論文, (民國96年)
    [3].蔡孟諺,”含亞磷酸酯與亞磷酸官能基的自我聚集性單分子層之合成,表面
    分析與血小板吸附之研究”, 國立成功大學化工所碩士論文, (民國88年)
    [4] Lubert Stryer, Biochemistry 4th edition, W. H. Freeman and Company. (1995)
    [5] J.A. Hayward, D. Chapman, Biomembrane Surfaces as Models for Polymer Design - the Potential for Hemocompatibility. Biomaterials 5 (1984) 135-142.
    [6] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe, N. Nakabayashi, Hemocompatibility of Human Whole-Blood on Polymers with a Phospholipid Polar Group and Its Mechanism. J Biomed Mater Res 26 (1992) 1543-1552.
    [7] D. Chapman, Biomembranes and New Hemocompatible Materials. Langmuir 9 (1993) 39-45.
    [8] R.H. Tredgold, An Introduction to Ultrathin Organic Films - from Langmuir-Blodgett to Self-Assembly - Ulman,A. Nature 354 (1991) 120-120.
    [9] R.G. Nuzzo, D.L. Allara, Adsorption of Bifunctional Organic Disulfides on Gold Surfaces. J Am Chem Soc 105 (1983) 4481-4483.
    [10] R.G. Nuzzo, L.H. Dubois, D.L. Allara, Fundamental-Studies of Microscopic Wetting on Organic-Surfaces .1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers. J Am Chem Soc 112 (1990) 558-569.
    [11] C.D. Bain, E.B. Troughton, Y.T. Tao, J. Evall, G.M. Whitesides, R.G. Nuzzo, Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold. J Am Chem Soc 111 (1989) 321-335.
    [12] C.D. Bain, J. Evall, G.M. Whitesides, Formation of Monolayers by the Coadsorption of Thiols on Gold - Variation in the Head Group, Tail Group, and Solvent. J Am Chem Soc 111 (1989) 7155-7164.
    [13] P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh, R.G. Nuzzo, Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of Normal-Alkanethiols on the Coinage Metal-Surfaces, Cu, Ag, Au. J Am Chem Soc 113 (1991) 7152-7167.
    [14] L.H. Dubois, B.R. Zegarski, R.G. Nuzzo, Fundamental-Studies of Microscopic Wetting on Organic-Surfaces .2. Interaction of Secondary Adsorbates with Chemically Textured Organic Monolayers. J Am Chem Soc 112 (1990) 570-579.
    [15] G.E. Poirier, Coverage-dependent phases and phase stability of decanethiol on Au(111) (vol 15, pg 1167, 1999). Langmuir 15 (1999) 3018-3020.
    [16] M. Himmelhaus, I. Gauss, M. Buck, F. Eisert, C. Woll, M. Grunze, Adsorption of docosanethiol from solution on polycrystalline silver surfaces: an XPS and NEXAFS study. J Electron Spectrosc 92 (1998) 139-149.
    [17] K.L. Prime, G.M. Whitesides, Self-Assembled Organic Monolayers - Model Systems for Studying Adsorption of Proteins at Surfaces. Science 252 (1991) 1164-1167.
    [18] M. Lindblad, M. Lestelius, A. Johansson, P. Tengvall, P. Thomsen, Cell and soft tissue interactions with methyl- and hydroxyl-terminated alkane thiols on gold surfaces. Biomaterials 18 (1997) 1059-1068.
    [19] K.L. Prime, G.M. Whitesides, Adsorption of Proteins onto Surfaces Containing End-Attached Oligo(Ethylene Oxide) - a Model System Using Self-Assembled Monolayers. J Am Chem Soc 115 (1993) 10714-10721.
    [20] G.E. Poirier, E.D. Pylant, The self-assembly mechanism of alkanethiols on Au(111). Science 272 (1996) 1145-1148.
    [21] A. Ulman, Formation and structure of self-assembled monolayers. Chem Rev 96 (1996) 1533-1554.
    [22] T. Ishida, S. Yamamoto, W. Mizutani, M. Motomatsu, H. Tokumoto, H. Hokari, H. Azehara, M. Fujihira, Evidence for cleavage of disulfides in the self-assembled monolayer on Au(111). Langmuir 13 (1997) 3261-3265.
    [23] E.B. Troughton, C.D. Bain, G.M. Whitesides, R.G. Nuzzo, D.L. Allara, M.D. Porter, Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates - Structure, Properties, and Reactivity of Constituent Functional-Groups. Langmuir 4 (1988) 365-385.
    [24] P.E. Laibinis, G.M. Whitesides, Omega-Terminated Alkanethiolate Monolayers on Surfaces of Copper, Silver, and Gold Have Similar Wettabilities. J Am Chem Soc 114 (1992) 1990-1995.
    [25] J.Y. Dai, Z.G. Li, J. Jin, J.J. Cheng, J. Kong, S.P. Bi, Study of the solvent effect on the quality of dodecanethiol self-assembled monolayers on polycrystalline gold. J Electroanal Chem 624 (2008) 315-322.
    [26] M.A.D. Millone, H. Hamoudi, L. Rodriguez, A. Rubert, G.A. Benitez, M.E. Vela, R.C. Salvarezza, J.E. Gayone, E.A. Sanchez, O. Grizzi, C. Dablemont, V.A. Esaulov, Self-Assembly of Alkanedithiols on Au(111) from Solution: Effect of Chain Length and Self-Assembly Conditions. Langmuir 25 (2009) 12945-12953.
    [27] R. Yamada, H. Sakai, K. Uosaki, Solvent effect on the structure of the self-assembled monolayer of alkanethiol. Chem Lett (1999) 667-668.
    [28] A. Kudelski, P. Krysinski, Solvent trapping during the self-assembly of octadecanethiol monolayer on roughened gold electrodes from surface-enhanced Raman scattering studies. J Electroanal Chem 443 (1998) 5-7.
    [29] F. Bensebaa, R. Voicu, L. Huron, T.H. Ellis, E. Kruus, Kinetics of formation of long-chain n-alkanethiolate monolayers on polycrystalline gold. Langmuir 13 (1997) 5335-5340.
    [30] U.K. Sur, V. Lakshminarayanan, A study of the hydrophobic properties of alkanethiol self-assembled monolayers prepared in different solvents. J Electroanal Chem 565 (2004) 343-350.
    [31] S.Y. Lee, J. Noh, M. Hara, H. Lee, An STM study on solvent effects in forming self-assembled cysteamine and propanethiol monolayers on Au(111). Mol Cryst Liq Cryst 377 (2002) 177-180.
    [32] Y. Jeong, H. Chung, J. Noh, Control of two-dimensional structure of tolanethioacetate self-assembled monolayers on Au(111). Colloid Surface A 313 (2008) 608-611.
    [33] V. Ganesh, V. Lakshminarayanan, Self-assembled monolayers of alkanethiols on gold prepared in a hexagonal lyotropic liquid crystalline phase of triton X-100/water system. Langmuir 22 (2006) 1561-1570.
    [34] O. Dannenberger, J.J. Wolff, M. Buck, Solvent dependence of the self-assembly process of an endgroup-modified alkanethiol. Langmuir 14 (1998) 4679-4682.
    [35] M. Castronovo, F. Bano, S. Raugei, D. Scaini, M. Dell'Angela, R. Hudej, L. Casalis, G. Scoles, Mechanical stabilization effect of water on a membrane-like system. J Am Chem Soc 129 (2007) 2636-2641.
    [36] B. Bechinger, J. Seelig, Conformational-Changes of the Phosphatidylcholine Headgroup Due to Membrane Dehydration - a H-2-Nmr Study. Chem Phys Lipids 58 (1991) 1-5.
    [37] P.G. Scherer, J. Seelig, Electric Charge Effects on Phospholipid Headgroups - Phosphatidylcholine in Mixtures with Cationic and Anionic Amphiphiles. Biochemistry-Us 28 (1989) 7720-7728.
    [38] C.H. Hsieh, W.G. Wu, Solvent Effect on Phosphatidylcholine Headgroup Dynamics as Revealed by the Energetics and Dynamics of 2 Gel-State Bilayer Headgroup Structures at Subzero Temperatures. Biophys J 69 (1995) 4-12.
    [39] O.V. Batishchev, A.V. Indenbom, Effect of acidity on the formation of solvent-free lipid bilayers. Russ J Electrochem+ 42 (2006) 1107-1112.
    [40] T.M. Ko, J.C. Lin, S.L. Cooper, Surface Characterization and Platelet-Adhesion Studies of Plasma-Sulfonated Polyethylene. Biomaterials 14 (1993) 657-664.
    [41] J.W. Boretos, W.S. Pierce, Segmented Polyurethane - a New Elastomer for Biomedical Applications. Science 158 (1967) 1481-1482.
    [42] A. Reisch, J.C. Voegel, E. Gonthier, G. Decher, B. Senger, P. Schaaf, P.J. Mesini, Polyelectrolyte Multilayers Capped with Polyelectrolytes Bearing Phosphorylcholine and Triethylene Glycol Groups: Parameters Influencing Antifouling Properties. Langmuir 25 (2009) 3610-3617.
    [43] J.M. Harris, Introduction to biomedical and biotechnical applications of polyethylene glycol. Abstr Pap Am Chem S 213 (1997) 21.
    [44] K.D. Caldwell, Modulation of biomaterial interactions with proteins and cells. Abstr Pap Am Chem S 214 (1997) 298.
    [45] Y.Y. Luk, M. Kato, M. Mrksich, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16 (2000) 9604-9608.
    [46] M.C. Shen, L. Martinson, M.S. Wagner, D.G. Castner, B.D. Ratner, T.A. Horbett, PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. J Biomat Sci-Polym E 13 (2002) 367-390.
    [47] D.K. Han, K.D. Park, K.D. Ahn, S.Y. Jeong, Y.H. Kim, Preparation and Surface Characterization of Peo-Grafted and Heparin-Immobilized Polyurethanes. J Biomed Mater Res-A 23 (1989) 87-104.
    [48] J.H. Lee, G. Khang, J.W. Lee, H.B. Lee, Platelet adhesion onto chargeable functional group gradient surfaces. J Biomed Mater Res 40 (1998) 180-186.
    [49] B.R. Mcauslan, G. Johnson, Cell Responses to Biomaterials .1. Adhesion and Growth of Vascular Endothelial-Cells on Poly(Hydroxyethyl Methacrylate) Following Surface Modification by Hydrolytic Etching. J Biomed Mater Res 21 (1987) 921-935.
    [50] V.A. Tegoulia, S.L. Cooper, Leukocyte adhesion on model surfaces under flow: Effects of surface chemistry, protein adsorption, and shear rate. J Biomed Mater Res 50 (2000) 291-301.
    [51] T.J. Su, R.J. Green, Y. Wang, E.F. Murphy, J.R. Lu, R. Ivkov, S.K. Satija, Adsorption of lysozyme onto the silicon oxide surface chemically grafted with a monolayer of pentadecyl-1-ol. Langmuir 16 (2000) 4999-5007.
    [52] L.H. Zhang, A.R. Esker, K. No, H. Yu, Static and dynamic properties of calixarene monolayers at the air/water interface. 2. Effects of ionic interactions with p-dioctadecanoylcalix[4] arene. Langmuir 15 (1999) 1725-1730.
    [53] K.G. Marra, T.M. Winger, S.R. Hanson, E.L. Chaikof, Cytomimetic biomaterials .1. In-situ polymerization of phospholipids on an alkylated surface. Macromolecules 30 (1997) 6483-6488.
    [54] L.K. Tamm, H.M. Mcconnell, Supported Phospholipid-Bilayers. Biophys J 47 (1985) 105-113.
    [55] Z.H. Yang, H. Yu, Biomembrane mimetic surfaces by phospholipid self-assembled monolayers on silica substrates. Langmuir 15 (1999) 1731-1737.
    [56] N.K.P. Samuel, M. Singh, K. Yamaguchi, S.L. Regen, Polymerized Depolymerized Vesicles - Reversible Thiol Disulfide-Based Phosphatidylcholine Membranes. J Am Chem Soc 107 (1985) 42-47.
    [57] R.E. Holmlin, X.X. Chen, R.G. Chapman, S. Takayama, G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17 (2001) 2841-2850.
    [58] V.A. Tegoulia, W.S. Rao, A.T. Kalambur, J.R. Rabolt, S.L. Cooper, Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold. Langmuir 17 (2001) 4396-4404.
    [59] S.F. Chen, J. Zheng, L.Y. Li, S.Y. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J Am Chem Soc 127 (2005) 14473-14478.
    [60] S.F. Chen, L.Y. Liu, S.Y. Jiang, Strong resistance of oligo(phosphorylcholine) self-assembled monolayers to protein adsorption. Langmuir 22 (2006) 2418-2421.
    [61] Y.C. Chung, Y.H. Chiu, Y.W. Wu, Y.T. Tao, Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials 26 (2005) 2313-2324.
    [62] Z. Zhang, S.F. Chen, Y. Chang, S.Y. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J Phys Chem B 110 (2006) 10799-10804.
    [63] Z. Zhang, M. Zhang, S.F. Chen, T.A. Horbetta, B.D. Ratner, S.Y. Jiang, Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29 (2008) 4285-4291.
    [64] Z. Zhang, S.F. Chen, S.Y. Jiang, Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7 (2006) 3311-3315.
    [65] K. Ishihara, H. Hanyuda, N. Nakabayashi, Synthesis of Phospholipid Polymers Having a Methane Bond in the Side-Chain as Coating Material on Segmented Polyurethane and Their Platelet Adhesion-Resistant Properties. Biomaterials 16 (1995) 873-879.
    [66] M. Elimelech, W.H. Chen, J.J. Waypa, Measuring The Zeta (Electrokinetic) Potential of Reverse-Osmosis Membranes by a Streaming Potential Analyzer. Desalination 95 (1994) 269-286.
    [67] R. Schweiss, P.B. Welzel, C. Werner, W. Knoll, Dissociation of surface functional groups and preferential adsorption of ions on self-assembled monolayers assessed by streaming potential and streaming current measurements. Langmuir 17 (2001) 4304-4311.
    [68] A.K. Bhattacharya, G. Thyagarajan, The Michaelis-Arbuzov Rearrangement. Chem Rev 81 (1981) 415-430.
    [69] C.E. Mckenna, M.T. Higa, N.H. Cheung, M.C. Mckenna, Facile Dealkylation of Phosphonic Acid Dialkyl Esters by Bromotrimethylsilane. Tetrahedron Lett (1977) 155-158.
    [70] G.S. Harbison, R.G. Griffin, Improved Method for the Synthesis of Phosphatidylcholines. J Lipid Res 25 (1984) 1140-1142.
    [71] R. Aneja, J.S. Chadha, Total Synthesis of Phosphatidylcholines. Biochim Biophys Acta 248 (1971) 455-559.
    [72] K.L. Agarwal, P.J. Cashion, A. Yamazaki, H.G. Khorana, Chemical Synthesis of Polynucleotides. Angew Chem Int Edit 11 (1972) 451-550.
    [73] D. Kafer, G. Witte, P. Cyganik, A. Terfort, C. Woll, A comprehensive study of self-assembled monolayers of anthracenethiol on gold: Solvent effects, structure, and stability. J Am Chem Soc 128 (2006) 1723-1732.
    [74] N. Kocharova, J. Leiro, J. Lukkari, M. Heinonen, T. Skala, F. Sutara, M. Skoda, M. Vondracek, Self-assembled carbon nanotubes on gold: Polarization-modulated infrared reflection-absorption spectroscopy, high-resolution X-ray photoemission spectroscopy, and near-edge X-ray absorption-fine structure spectroscopy study. Langmuir 24 (2008) 3235-3243.
    [75] W. Jiang, G. Fischer, Y. Girmay, K. Irgum, Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode. J. Chromatogr. A 1127 (2006) 82-91.
    [76] O liva M. Primera-Pedrozo, Fiber Optic Coupled Grazing Angle/Fourier Transform Reflection Absorption Infrared Spectroscopy as an Analyzer of Explosive and Pharmaceutical Residues on Surfaces. (2005)
    [77].Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons. (2001) .
    [78].Christopher M. A. Brett Ana Maria Oliveira Brett, Electrochemistry: Principles, Methods, and Applications, Oxford University Press, (1993)

    無法下載圖示 校內:2015-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE