簡易檢索 / 詳目顯示

研究生: 郭正傑
Guo, Jheng-jie
論文名稱: 南部懸浮微粒超級測站之自動監測儀器與手動方法之比對
Comparisons of Measurement Method at the PM supersites in Southern Taiwan
指導教授: 吳義林
Wu, Yi-lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 轉換率超級測站潮解點自動監測儀
外文關鍵詞: deliquescence points, real time measurements, supersite, percent of theoretical conversion
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣南部地區於2005年完成設置南部懸浮微粒超級測站,設立一個位於大寮之核心站及三個分別位於橋頭、前鎮及潮洲之衛星站。微粒超級測站之即時的自動監測儀,不僅可以連續採集微粒,且能同時進行化學成分分析,得到短時間的分析結果,再透過與電腦連線,可以紀錄逐時的分析結果。
    本研究則利用人工採樣監測方式:同心圓管氣固分離器(ADS)、蜂巢套管氣固分離器(HDS)以及旋風集塵器與濾紙匣(Cyclone),與自動監測儀器:微粒PM2.5質量濃度監測儀(R&P 1400)、微粒硫酸鹽濃度監測儀(R&P 8400S)與微粒硝酸鹽濃度監測儀(R&P 8400N)比較PM2.5質量濃度、硫酸鹽與硝酸鹽濃度之一致性,探討不同微粒特性監測原理與分析方法之差異。本研究共進行三次採樣,時間分別為2005年12月、2006年10月與2007年3月。採樣所得之手動與自動監測儀器之監測數據利用線性迴歸與顯著水準0.05之雙尾t檢定進行資料分析。
    其中ADS與HDS兩種手動儀器,皆可採集氣體與粒狀物污染物,且採樣原理相似,故首先討論ADS與HDS兩者之一致性。ADS與HDS兩者之間,在氣體方面,二氧化硫與氨氣之採樣測值比對結果有著良好之一致性;而粒狀物方面,化學成分之非揮發性物種(Na+、K+、Mg2+與Ca2+)濃度,除鉀離子以外,皆以ADS之測值較HDS之測值小,由於鉀離子之質量平均粒徑約為0.8 μm,而鈉、鎂與鈣離子之質量平均粒徑則分別為5 μm、6 μm與6 μm,可能ADS之篩選粒徑略小於HDS之篩選粒徑所導致,但不影響採集PM2.5質量濃度、硫酸鹽以及硝酸鹽濃度之一致性。
    手動儀器與自動監測儀器之比對,PM2.5質量濃度之比對結果,手動儀器之測值與R&P 1400之測值兩者之間存在明顯差異,主要是受到硫酸銨與硝酸銨等吸濕物質會吸收水分,以及R&P 1400在裝備之除濕系統(Sample equilibration system,SES)時,量測硝酸銨會有低估的現象所影響。但若在環境之相對濕度介於硫酸銨與硝酸銨之潮解點之間,且硝酸鹽濃度小於10 μg/m3之條件下,則手動儀器與R&P 1400之測值則無明顯差異存在。R&P 8400S與R&P 8400N兩者之硫酸鹽與硝酸鹽測值則是可能受到轉換率影響,而轉換率之影響包括轉換率的標準液成分與轉換率兩次定期校正間之短暫變化。利用與原廠標準液(硫酸鈉與硝酸鉀)不同標準液成分(硫酸銨與硝酸銨)進行轉換率校正,會導致不同的轉換率結果,且以硫酸鈉與硫酸銨標準液所得之轉換率結果差異較大。不同成分之標準液會有不同的轉換率結果,這也顯示所採集之粒狀物成分也會影響閃火揮發的轉換率。在兩次定期校正期間,進行多次的轉換率標準液校正,發現有時間的短暫變化,但沒有週期性的變化。

    Four PM supersites have been setup in southern Taiwan in 2005: a center site at Dailiao and three satellite sites at Chiaotou, Chianjen, and Chaochou, respectively. Real time or semi-real time measurements are conducted for concentrations of PM mass and compositions at the supersites by using P&P 1400 and R&P 8400. In order to compare the measurement results by different methods, annular denuder system (ADS), honeycomb denuder system (HDS), and cyclone & filter pack (CFP) were used with the above continuous methods in parallel samplings.The samplers of manual methods were analyzed by ion chromatography for ammonium, nitrate, and sulfate.
    Excellent consistencies were obtained between ADS and HDS for both gaseous SO2, NH3 and particulate mass, nitrate, and sulfate. However, results of R&P 1400 are less than those of ADS and HDS due to the sampling loss of nitrate and moisture. Good agreements are obtained when relative humidity are within deliquescence points of ammonium sulfate and ammonium nitrate and the nitrate concentration is less than 10 μg/m3. The concentrations of nitrate and sulfate measured by R&P 8400 are computed with the percent of theoretical conversion, which is determined by the chemical species of calibration aqueous solution. The major chemical species of PM2.5 are ammonium sulfate and ammonium nitrate; however, the standard solutions for calibration of theoretical conversion are potassium nitrate and sodium sulfate. Significant differences have been found for the conversion efficiencies among various species.

    第1章 、前言 1 1-1 、研究背景 1 1-2 、研究目的 1 第2章 、文獻回顧 3 2-1 、懸浮微粒之定義、來源及粒徑分布 3 2-2 、大氣懸浮微粒之監測 12 2-2-1 、監測方法種類與原理 12 2-2-1-1 、人工監測儀器 12 2-2-1-1-1 、同心圓管氣固分離器 12 2-2-1-1-2 、蜂巢套管氣固分離器 15 2-2-1-1-3 、旋風集塵器與濾紙匣 18 2-2-1-2 、自動監測儀器 19 2-2-1-2-1 、微粒質量濃度監測儀(R&P 1400) 19 2-2-1-2-2 、微粒硫酸鹽濃度監測儀(R&P 8400S) 22 2-2-1-2-3 、微粒硝酸鹽濃度監測儀(R&P 8400N) 23 2-2-2 、懸浮微粒監測儀器之比對研究 25 第3章 、研究方法 29 3-1 、採樣方法、地點與時間 29 3-1-1 、採樣方法 29 3-1-2 、採樣地點 31 3-1-3 、採樣時間 32 3-2 、分析方法 32 3-2-1 、萃取 33 3-2-2 、微量天平 33 3-2-3 、離子層析儀(IC) 33 3-3 、品保與品管作業 34 3-3-1 、採樣方法之品保與品管 34 3-3-1-1 、採樣位置 34 3-3-1-2 、重複採樣 34 3-3-2 、分析方法之品保與品管 35 3-3-2-1 、檢量線 35 3-3-2-2 、方法偵測極限 35 3-3-2-3 、重複分析 36 3-4 、資料分析 37 3-4-1 、假說檢定(t-test) 37 第4章 、結果與討論 39 4-1 、同心圓管氣固分離器與蜂巢套管氣固分離器之比對結果 39 4-1-1 、氣體污染物比對結果 39 4-1-2 、粒狀物之比對 51 4-1-2-1 、PM2.5質量濃度之比對結果 51 4-1-2-2 、化學成分之比對結果 51 4-1-2-2-1 、非揮發性物種 51 4-1-2-2-2 、硫酸鹽與硝酸鹽 56 4-1-3 、ADS與HDS之比對結論 61 4-2 、PM2.5質量濃度比對結果 62 4-2-1 、全部數據比對結果 62 4-2-2 、潮解點之探討 69 4-2-2-1 、相對濕度小於硝酸銨之潮解點 69 4-2-2-2 、相對濕度介於硫酸銨與硝酸銨之潮解點 72 4-2-2-2-1 、硝酸鹽濃度小 75 4-2-2-2-2 、硝酸鹽濃度大 80 4-2-2-3 、相對濕度大於硫酸銨之潮解點 83 4-2-3 、PM2.5質量濃度比對結論 84 4-3 、化學成分之比對結果 86 4-3-1 、硫酸鹽之比對結果 86 4-3-2 、硝酸鹽之比對結果 92 4-3-3 、差異原因探討 100 4-3-3-1 、轉換率 100 第5章 、結論與建議 105 5-1 、結論 105 5-2 、建議 106 參考文獻 107

    Allen G., C. Sioutas, P. Koutrakis, R. Reiss, F.W. Lurmann, and P.T. Roberts, “Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas,” Journal of Air and Waste Management Association,47,pp.682-689(1997).
    Ayers, G.P., M.D. Keywood, and J.L.Gras,“TEOM vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations,” Atmospheric Environment.33,pp.3717-3721(1999).
    Brian, S., “Evaluation of the Spectre SBK 1772 Particulate Monitor, ” NETCEN,AEAT-3953 ISSUE, (1998).
    Calvert, J. G. and W. R. Stockwell, “Mechanism and rates of gas-phase oxidation of sulfur dioxide and nitrogen oxides in the atmosphere”, in: SO2, NO and NO2 Oxidation Mechanisms,” Atmospheric Considerations, Acid Precipitation Series, Volume 3, Calvert J. G.(ed.), Butterworth Publishers, pp. 1-62(1984).
    Cyrys, J., G. Dietrich, W. Kreyling, T. Tuch, and J. Heinrich, “ PM2.5 measurements in ambient aerosol: comparison between Harvard impactor(HI)and the tapered element oscillating microbalance(TEOM)system, ” the Science of the Total Environment, 278,pp.191-197(2001).
    Colberg C.A., B.P. Luo, H.Wernli, T. Koop, and Th. Peter, “A novel model to predict the physical state of atmospheric H2SO4/NH3/H2O aerosol particles, ” Atmospheric Chemistry and Physics ,3, pp.909-924, (2003).
    Drewnick, F., J.J. Schwab, O.Hogrefe, S.Peters, L.Husain, D.Diamond, R.Weber, K.L. Demerjian,. “Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments,” Atmospheric Environment 37,pp.3335-3350(2003).
    Forrest, J., D.J. Spandau, R.L. Tanner, T. D’Ottavio and L. Newman, “Determination of total iorganic nitrate utilizing collection of nitric acid on NaCl-impregnated filters,” Atmospheric Environment, 14, 137(1980).
    Green, D., G. Fuller, and B. Barratt, “Evaluation of TEOMTM ’correction factor’ for assessing the EU Stage 1 limit values for PM10,” Atmospheric Environment,35,pp.2589-2593 (2001).
    Kenny, L.C. and R.A. Gussman, “A Direct Approach To The Design Of Cyclones For Aerosol-monitoring Applications,” J. Aerosol Science Vol. 31, No. 12, pp. 1407-1420(2000). Aerosol Science and Technology 32,pp.338-358 (2000).
    Koutrakis, P., C. Sloutas, S.T. Ferguson and J.M. Wolfson, “Development and Evaluation of a Glass Honeycomb Denuder/Filter Pack System to Collect Atmospheric Gases and Particles,” Environmental Science and Technology., 27(12),pp.2497-501(1993).
    Koutrakis, P., J.M. Wolfson, J.L. Stator, M. Brauer and J.D. Spengler, “Evaluation of an Annular Denuder/Filter Pack System to Collect Acidic Aerosols and Gases,” Environmental Science and Technology, 22(12),pp.1463-8(1988).
    Lee C.T.and W.C.Hsu, “The measurement of liquid water mass associated with collected hygroscopic particles, ” Journal of Aerosol Science, V31, 2, pp.189-197(9)(2000).
    Long, R.W., W.A. McClenny, “Laboratory and field evaluation of instrumentation for the semicontinuous determination of particulate nitrate(and other water-soluble particulate components),” Journal of Air & Waste Management Association ,56, pp.294-305(2006).
    Pilinis, C., J.H. Seinfeld, “Development and evaluation of an Eulerian photochemical gas-aerosol model,” Atmospheric Environment, 22,pp.1985-2001(1988).
    Patashnick, H. and E.G. Rupprecht, “Continuous PM10 measurements using the tapered element oscillating microbalance, ” Journal of Air & Waste Management Association ,41,pp.1079-83(1991).
    Philip, D.,I.G. Kavouras,D. Harrison and P. Koutrakis, “Development and Evaluationof an Impactor for a PM2.5 Speciation Sampler, ” Journal of Air & Waste Management Association,51,pp.514-523(2001).
    Rupprecht, E.G., M. Meyer, and H. Patashnick, “ The Tapered Element Oscillating Microbalance as a tool for measuring ambient particulate concentrations in real time,” Oxford, UK(1992).
    Rupprecht, E.G. and H.Patashnick, “Developments in Continuous Fine Particle Mass Monitoring:Sample Equilibration and Differential Particle Sampling,” New York State Energy Research and Development Authority(2003).
    Rattigana, O.V., O. Hogrefe, H.D. Feltona, J.J. Schwabb,U.K. Roychowdhuryb, L.Husainc, V.A. Dutkiewiczc,K.L. Demerjianb,“Multi-year urban and rural semi-continuous PM2.5 sulfate and nitrate measurements in New York state: Evaluation and comparison with filter based measurements,” Atmospheric Environment 40 ,S192–S205(2006).
    Stelson, A.W., S.K. Friediander and J.H. Seinteld, “A note on the equilibrium relationship between ammonia and nitic acid and particulate ammonium nitrate,” Atmospheric Environment, Vol.13,pp.369(1979).
    Seinfeld, J.H., “Atmospheric chemistry and physics of air pollution”, Wiley-interscience, New York(1986).
    Sloutas, C., P.Y. Wang, S.T. Ferguson, and P. Koutrakis, “Laboratory and Field Evaluation of an Improved Glass Honeycomb Denuder/Filter Pack Sampler,” Atmospheric Environment.,30(6),pp.885-95(1996).
    Stolzenburg, M.R. and S.V. Hering,“A new method for the automated measurement of atmospheric fine particle nitrate,” Environmental Science and Technology 34, pp.907-914(2000).
    Tsai, C.J., S.B. Perng, and S.F. Chiou, “Use of Two Different Acidic Aerosol Samplers To Measure Acidic Aerosols in Hsinchu, Taiwan,” Air & Waste Manage. Assoc. 50, pp.2120-2128(2000).
    Wolff, G. T., “On the nature of nitrate in coarse continental aerosols,” Atmospheric Environment,18, pp.977–981(1984).
    Wall, S. M., W. John, and J. L. Ondo, “Measurement of aerosol size distributions for nitrate and major ionic species,” Atmospheric Environment, V22, pp.1649-1656, (1988).
    Wang, H.C. and W. John, “Characteristics of berner impactor for sampling inorganic ions,” Aerosol Science and Technology, 8,pp.157(1988).
    Wittig, A.E., S.Takahama, A.Y. Khlystov, S.N. Pandis, S. Hering, B.Kirby, C.Davidson, “Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh Air Quality Study,” Atmospheric Environment 34,pp.3201-3213(2004).
    Yoshizumi, K., “Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosol,” Environmental Science and Technology, V19, pp.258-261 (1985).
    Yao, X., Arthur P.S. Laua, M. Fanga, C.K. Chanb and M. Hu, “Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China: 1—inorganic ions,” Atmospheric Environment, 37 , pp.2991-3000(2003).
    Zhang, X. and P.H. McMurry, “Theoretical analysis of evaporative losses from impactor and filter deposits, ” Atmospheric Environment, 21,pp.1779(1987).
    Zhang, X. and P.H. McMurry, “Evaporative losses of fine particulate nitrates during sampling, ” Atmospheric Environment, 26A, pp.3305(1992).
    吳易儒,『民俗活動對於空氣品質之影響』,國立成功大學碩士論文(2004)。
    張凱倫,『大氣奈米微粒無機鹽類組成特性研究』,國立成功大學碩士論文(2004)。
    陳志傑,『台北縣都會區氣懸微粒污染調查研究計畫期中報告』,行政院環境保護署,(1997)。
    蔡德明、吳義林,『高屏地區大寮測站PM2.5與PM10之組成分特徵研究』,1998年氣膠研討會論文集,第339-346 頁(1998)。
    環境保護署,『空氣中粒狀污染物自動檢測方法-慣性質量法』,行政院環境保護署(2000)。

    下載圖示 校內:2010-07-27公開
    校外:2010-07-27公開
    QR CODE