簡易檢索 / 詳目顯示

研究生: 林淑樺
Lin, Shu Hua
論文名稱: 集合住宅在設計初期之多目的最佳化:生命週期碳排、成本與舒適度
Multi-Objective Optimization of Multifamily Residential Buildings in Early Design Stage: Life-Cycle Assessment, Life-Cycle Cost and Comfort
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 168
中文關鍵詞: 集合住宅生命週期評估生命週期成本多目的最佳化設計初期
外文關鍵詞: Multifamily Residential Buildings , Life-Cycle Assessment, Life-Cycle Cost, Multi-Objective Optimization, Early Design Stage
相關次數: 點閱:17下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自18世紀工業革命以來,全球暖化現象日益加劇,為了控制升溫幅度,聯合國政府間氣候變化專門委員會(IPCC)提出將全球升溫限制在1.5℃以內的路徑,並且在2050年須達到淨零碳排。而根據國際能源署(IEA)的報告,2022年建築部門排放量約占總能源排放的34%,其中,住宅部門常年貢獻了超過50%的排放量,可見住宅建築在能源消耗中占據重要地位。然而,隨著環境的變遷與碳有價的時代來臨,建築性能的相關規範與設計標準日益多元,使得永續建築設計愈發複雜。考量到在設計初期變更設計的成本最低,因此,設計者如何於設計初期,克服資訊量不足且充斥著大量不確定性的挑戰下,以時間與經濟成本最低的途徑,做出對環境負擔最小的設計決策,同時顧及室內環境品質,著實為相當複雜的課題。
    在台灣,約有63%的建築總樓地板面積為住宅類使用,其中,集合住宅因其總樓地板面積龐大以及標準層等特性,進行參數化永續設計的效益相當顯著。因此,本研究旨在開發出一個適用於集合住宅之多目的最佳化工具,在設計初期快速評估集合住宅各設計方案的生命週期碳排、生命週期成本與舒適度,工具架構是建立在Rhino Grasshopper平台上,並且基於台灣法定的評估系統以及本土的資料所設計。工具驗證結果表明,與耗時費力的人工計算之數值差異僅不到0.1%,並且除了LCCO2、LCC與IVR的量化指標外,該工具還提供了視覺化介面,可以很好地與實務上的設計流程接軌。
    在案例研究中,將該工具應用於多個實際集合住宅案例上,各目標的最佳化結果顯示,LCCO2減少了5%~13%,LCC大幅降低了14%~23%,IVR則改善了1%~13%,而各案之平衡解相較於單目標最佳解則有更均衡的表現,在LCCO2上減少了0%~10%,同時在LCC上顯著降低了12%~22%,IVR的差異則介於-11%~+5%之間。除了評估與原設計案的差異外,本研究也深入探討各案最佳解之間在各參數表現上的相似性,針對不同設計目標導向提供設計策略與建議,另外,本研究還進一步分析了各案例在生命週期碳排與生命週期成本上的差異來源,並且針對LCCO2、LCC與IVR三目標進行各設計變數的敏感度分析,揭露碳排、成本與舒適度的關鍵影響參數,提供設計者永續且經濟的設計指引。

    With the evolving environmental context and the advent of upfront carbon pricing, regulations and design criteria related to building performance are becoming increasingly diverse and complex. Given that the cost of design modifications is lowest during the early design stage, it is crucial for designers to overcome challenges of limited information and significant uncertainties, make decisions efficiently, and ensure indoor environmental quality.
    In Taiwan, approximately 63% of the total building gross floor area is allocated to the residential sector, where multifamily residential buildings are particularly responsive to parametric sustainable design strategies due to their substantial floor areas and standardized layouts. This research aims to develop a multi-objective optimization (MOO) tool for multifamily residential buildings in the early design stage. The tool, based on national regulations and localized databases in Taiwan, enables rapid evaluation of life-cycle carbon emissions (LCCO2), life-cycle cost (LCC), and insufficient ventilation ratio (IVR). Validation indicates that results deviate by less than 1% from conventional manual calculations.
    In the case study, several multifamily residential buildings were examined. The MOO results showed that LCCO2 decreased by 5%–13%, LCC declined by 14%–23%, and IVR improved by 1%–13%. For balanced solutions, LCCO2 and LCC decreased by 0%–10% and 12%–22%, respectively, while IVR ranged from –11% to +5%. Similarities among MOO solutions were analyzed to derive objective-oriented design strategies. Comparative analyses of LCCO2 and LCC, along with sensitivity analyses, identified key parameters influencing LCCO2, LCC, and IVR, ultimately proposing sustainable and cost-effective design guidelines.

    第一章 緒論 1 1-1 研究背景及動機 1 (一) 全球暖化與淨零趨勢 1 (二) 台灣淨零碳排路徑 2 (三) 建築部門與住宅部門之碳排放 5 1-2 研究目的 7 1-3 研究範圍與流程 9 (一) 研究範圍 9 (二) 研究流程 10 第二章 文獻回顧與相關理論 11 2-1 BIM-LCA相關研究 11 (一) BIM-LCA 之介紹 11 (二) BIM-LCA 之類型 11 (三) BIM-LCA 在住宅建築之應用 12 2-2 建築性能最佳化 14 (一) 關鍵設計變數 14 (二) 多目的最佳化 15 (三) 研究缺口 18 第三章 研究方法 19 3-1 生命週期評估 19 (一) 蘊含碳排評估 20 (二) 使用碳排評估 23 3-2 生命週期成本 29 (一) 評估架構 29 (二) 評估範疇與方法 30 (三) 計算公式 31 (四) 資料蒐集 32 3-3 舒適度指標 33 3-4 多目的最佳化 34 (一) 定義與方法 34 (二) 最佳化目標 39 第四章 多目的最佳化工具開發 40 4-1 集合住宅設計初期參數化模型 40 (一) 幾何模型 40 (二) 設計變數 41 (三) 固定參數 44 4-2 多目的最佳化工具 45 (一) 資料庫導入、參數設定與模型生成 45 (二) 蘊含碳排評估架構 46 (三) 使用碳排與舒適度評估架構 49 (四) 生命週期成本評估架構 54 (五) 多目的最佳化架構 54 4-3 工具驗證 56 4-4 最佳化參數設定 58 第五章 實務案例操作 62 5-1 案例基本資料 62 5-2 最佳化結果 63 第六章 工具導入設計初期之應用 94 6-1 生命週期碳排、成本與舒適度改善潛力 94 (一) 案例間比較分析 94 (二) 地區性差異分析 99 6-2 蘊含碳排與使用碳排比例 103 6-3 生命週期碳排與建築規模 106 6-4 生命週期成本比例 107 6-5 敏感度分析 109 (一) 設計參數對 LCCO2 之敏感度 110 (二) 設計參數對 LCC 之敏感度 112 (三) 設計參數對 IVR 之敏感度 113 第七章 結論與建議 114 7-1 研究結論 114 7-2 研究限制與未來研究建議 117 參考文獻 118 附錄 125

    (一) 中文文獻
    1. 內政部(2017)。建築物節約能源設計技術規範。內政部主管法規查詢系統。https://glrs.moi.gov.tw/LawContent.aspx?id=GL001227
    2. 中央銀行(2024)。中央銀行統計資料庫。中華民國中央銀行全球資訊網。https://www.cbc.gov.tw/tw/
    3. 行政院主計總處(2025)。核發建築物使用執照總樓地板面積-按用途別分。總體統計資料庫。https://nstatdb.dgbas.gov.tw/
    4. 行政院主計總處(2024)。營造工程物價指數。總體統計資料庫。https://nstatdb.dgbas.gov.tw/
    5. 林佑蓁(2022)。機器學習於被動式建築之應用-以立面設計之熱舒適評估流程為例。國立成功大學。
    6. 林權萱(2021)。機器學習導入永續建築設計流程-以參數立面日光設計和性能最佳化為例。國立成功大學。
    7. 內政部建築研究所(2023)。低碳(低蘊含碳)建築評估手冊(2023年版)。內政部建築研究所。
    8. 內政部建築研究所(2024)。建築能效評估手冊(2024年版)。內政部建築研究所。
    9. 財團法人臺灣營建研究院(2024)。營建物價2023年刊。財團法人臺灣營建研究院。
    10. 國家發展委員會(2022)。臺灣2050淨零排放路徑及策略總說明。國家發展委員會。https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811
    11. 經濟部能源署(2024)。2023年燃料燃燒之二氧化碳排放量統計與分析。經濟部能源署。https://www.moeaea.gov.tw/
    12. 數位發展部(2024)。台灣電力公司用電統計資料。政府資料開放平台。https://data.gov.tw/dataset/6064
    (二) 英文文獻
    1. Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2015). A new methodology for cost-optimal analysis by means of the multi-objective optimization of building energy performance. Energy and Buildings, 88, 78-90.
    2. Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2016). Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort. Energy and Buildings, 111, 131-144.
    3. Ascione, F., Bianco, N., Mauro, G. M., & Vanoli, G. P. (2019). A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin. Applied Energy, 241, 331-361.
    4. Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81-92.
    5. Bre, F., & Fachinotti, V. D. (2017). A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. Energy and Buildings, 154, 283-294.
    6. Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of building information modelling (BIM). International journal of project management, 31(7), 971-980.
    7. Bull, J. W. (2003). Life cycle costing for construction. Routledge.
    8. Carlucci, S., Cattarin, G., Causone, F., & Pagliano, L. (2015). Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy and Buildings, 104, 378-394.
    9. Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Applied energy, 143, 395-413.
    10. Chen, B., Liu, Q., Chen, H., Wang, L., Deng, T., Zhang, L., & Wu, X. (2021). Multiobjective optimization of building energy consumption based on BIM-DB and LSSVM-NSGA-II. Journal of Cleaner Production, 294, 126153.
    11. Chen, R., Tsay, Y. S., & Ni, S. (2022). An integrated framework for multi-objective optimization of building performance: Carbon emissions, thermal comfort, and global cost. Journal of Cleaner Production, 359, 131978.
    12. Chen, R., Tsay, Y. S., & Zhang, T. (2023). A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective. Energy, 262, 125373.
    13. Chen, X., Yang, H., & Zhang, W. (2018). Simulation-based approach to optimize passively designed buildings: A case study on a typical architectural form in hot and humid climates. Renewable and Sustainable Energy Reviews, 82, 1712-1725.
    14. Chen, Z., Chen, L., Zhou, X., Huang, L., Sandanayake, M., & Yap, P. S. (2024). Recent technological advancements in BIM and LCA integration for sustainable construction: a review. Sustainability, 16(3), 1340.
    15. Cruz, A. S., Caldas, L. R., Mendes, V. M., Mendes, J. C., & Bastos, L. E. G. (2024). Multi-objective optimization based on surrogate models for sustainable building design: A systematic literature review. Building and Environment, 112147.
    16. Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704.
    17. Chantrelle, F. P., Lahmidi, H., Keilholz, W., El Mankibi, M., & Michel, P. (2011). Development of a multicriteria tool for optimizing the renovation of buildings. Applied Energy, 88(4), 1386-1394.
    18. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
    19. Deb, K. (2011). Multi-objective optimisation using evolutionary algorithms: an introduction. In Multi-objective evolutionary optimisation for product design and manufacturing (pp. 3-34). London: Springer London.
    20. Eastman, C. M. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons.
    21. Echenagucia, T. M., Capozzoli, A., Cascone, Y., & Sassone, M. (2015). The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis. Applied energy, 154, 577-591.
    22. Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer Science & Business Media.
    23. European Committee for Standardization. (2011). Sustainability of construction works-Assessment of environmental performance of buildings-Calculation method (EN 15978:2011). BSI.
    24. Fletcher, R. (2000). Practical methods of optimization. John Wiley & Sons.
    25. Fuller, S. K., & Petersen, S. R. (1995). Life cycle costing manual. NIST handbook, 135.
    26. Gill, P. E., Murray, W., & Wright, M. H. (2019). Practical optimization. Society for Industrial and Applied Mathematics.
    27. Goldberg, D. E., Deb, K., & Clark, J. H. (1991). Genetic algorithms, noise, and the sizing of populations. Complex systems, 6, 333-362.
    28. Hamdy, M., Nguyen, A. T., & Hensen, J. L. (2016). A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems. Energy and Buildings, 121, 57-71.
    29. Harkouss, F., Fardoun, F., & Biwole, P. H. (2018). Multi-objective optimization methodology for net zero energy buildings. Journal of Building Engineering, 16, 57-71.
    30. Herman, J. and Usher, W. (2017) SALib: An open-source Python library for sensitivity analysis. Journal of Open Source Software, 2(9). doi:10.21105/joss.00097
    31. Heydari, M., & Heravi, G. (2023). A BIM-based framework for optimization and assessment of buildings' cost and carbon emissions. Journal of Building Engineering, 79, 107762.
    32. Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
    33. Homma, T., & Saltelli, A. (1996). Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety, 52(1), 1-17.
    34. Hopfe, C. J. (2009). Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization.
    35. Hosamo, H. H., Tingstveit, M. S., Nielsen, H. K., Svennevig, P. R., & Svidt, K. (2022). Multiobjective optimization of building energy consumption and thermal comfort based on integrated BIM framework with machine learning-NSGA II. Energy and Buildings, 277, 112479.
    36. IEA, IRENA & UN Climate Change High-Level Champions (2023). Breakthrough Agenda Report 2023. IEA. https://www.iea.org/reports/breakthrough-agenda-report-2023
    37. International Organization for Standardization. (2016). Environmental management — Life cycle assessment — Principles and framework (ISO Standard No. 14040:2006). https://www.iso.org/standard/37456.html
    38. International Organization for Standardization. (2017). Buildings and constructed assets — Service life planning — Part 5: Life-cycle costing (ISO Standard No. 15686-5:2017). https://www.iso.org/standard/61148.html
    39. Intergovernmental Panel on Climate Change. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IGES.
    40. Intergovernmental Panel on Climate Change. (2018). Global Warming of 1.5°C. Cambridge University Press. https://doi.org/ 10.1017/9781009157940.
    41. Intergovernmental Panel on Climate Change. (2023). Climate Change 2023: Synthesis Report. IPCC, https://dx.doi.org/10.59327/IPCC/AR6-9789291691647
    42. Islam, H., Jollands, M., & Setunge, S. (2015). Life cycle assessment and life cycle cost implication of residential buildings—A review. Renewable and sustainable energy reviews, 42, 129-140.
    43. Jung, Y., Heo, Y., & Lee, H. (2021). Multi-objective optimization of the multi-story residential building with passive design strategy in South Korea. Building and Environment, 203, 108061.
    44. Kotaji, S., Schuurmans, A., & Edwards, S. (Eds.). (2003). Life-Cycle Assessment in Building and Construction: A state-of-the-art report, 2003. Setac.
    45. Li, K., Pan, L., Xue, W., Jiang, H., & Mao, H. (2017). Multi-objective optimization for energy performance improvement of residential buildings: A comparative study. Energies, 10(2), 245.
    46. Li, Y. F., Ng, S. H., Xie, M., & Goh, T. N. (2010). A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Applied soft computing, 10(4), 1257-1273.
    47. Liu, H., Li, Y., Duan, Z., & Chen, C. (2020). A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Conversion and Management, 224, 113324.
    48. Liu, Y., Li, T., Xu, W., Wang, Q., Huang, H., & He, B. J. (2023). Building information modelling-enabled multi-objective optimization for energy consumption parametric analysis in green buildings design using hybrid machine learning algorithms. Energy and Buildings, 300, 113665.
    49. MacLeamy, P. (2004). Collaboration, integrated information and the project lifecycle in building design, construction and operation. WP-1202, The construction users roundtable.
    50. Mukkavaara, J., & Shadram, F. (2021). An integrated optimization and sensitivity analysis approach to support the life cycle energy trade-off in building design. Energy and Buildings, 253, 111529.
    51. Najjar, M., Figueiredo, K., Palumbo, M., & Haddad, A. (2017). Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. Journal of Building Engineering, 14, 115-126.
    52. Net Zero Tracker. (2024). Net Zero Stocktake 2024. NewClimate Institute, Oxford Net Zero, Energy and Climate Intelligence Unit and Data-Driven EnviroLab.
    53. Nossent, J., Elsen, P., & Bauwens, W. (2011). Sobol’sensitivity analysis of a complex environmental model. Environmental modelling & software, 26(12), 1515-1525.
    54. Rao, S. S. (2019). Engineering optimization: theory and practice. John Wiley & Sons.
    55. Röck, M., Hollberg, A., Habert, G., & Passer, A. (2018). LCA and BIM: Visualization of environmental potentials in building construction at early design stages. Building and environment, 140, 153-161.
    56. Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice: a guide to assessing scientific models (Vol. 1). New York: Wiley.
    57. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., ... & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons.
    58. Satola, D., Houlihan-Wiberg, A., & Gustavsen, A. (2022). Global sensitivity analysis and optimisation of design parameters for low GHG emission lifecycle of multifamily buildings in India. Energy and Buildings, 277, 112596.
    59. Sastry, K., Goldberg, D., & Kendall, G. (2005). Genetic algorithms. Search methodologies: Introductory tutorials in optimization and decision support techniques, 97-125.
    60. Schade, J. (2007). Life cycle cost calculation models for buildings. Proceedings of 4th Nordic Conference on Construction Economics and Organisation : Development Processes in Construction Mangement, 321–329. Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-32123
    61. Schlueter, A., & Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. Automation in construction, 18(2), 153-163.
    62. Sivanandam, S. N., Deepa, S. N., Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms (pp. 15-37). Springer Berlin Heidelberg.
    63. Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
    64. Tam, V. W., Zhou, Y., Shen, L., & Le, K. N. (2023). Optimal BIM and LCA integration approach for embodied environmental impact assessment. Journal of Cleaner Production, 385, 135605.
    65. Tayari, F. (2023). Inflation and Escalation in Economics. EME 460 Geo-Resources Evaluation and Investment Analysis. https://www.e-education.psu.edu/eme460/node/546
    66. Ten Broeke, G., Van Voorn, G., & Ligtenberg, A. (2016). Which sensitivity analysis method should I use for my agent-based model?. Journal of Artificial Societies and Social Simulation, 19(1), 5.
    67. Tian, W. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and sustainable energy reviews, 20, 411-419.
    68. Wong, J. K. W., & Zhou, J. (2015). Enhancing environmental sustainability over building life cycles through green BIM: A review. Automation in construction, 57, 156-165.
    69. Wu, C., Pan, H., Luo, Z., Liu, C., & Huang, H. (2024). Multi-objective optimization of residential building energy consumption, daylighting, and thermal comfort based on BO-XGBoost-NSGA-II. Building and Environment, 254, 111386.
    70. Xue, Q., Wang, Z., & Chen, Q. (2022, January). Multi-objective optimization of building design for life cycle cost and CO2 emissions: A case study of a low-energy residential building in a severe cold climate. In Building simulation (Vol. 15, No. 1, pp. 83-98). Beijing: Tsinghua University Press.
    71. Yi, T. H., Li, H. N., & Gu, M. (2011). Optimal sensor placement for health monitoring of high‐rise structure based on genetic algorithm. Mathematical Problems in Engineering, 2011(1), 395101.
    72. Yu, X., & Gen, M. (2010). Introduction to evolutionary algorithms. Springer Science & Business Media.
    73. Yu, W., Li, B., Jia, H., Zhang, M., & Wang, D. (2015). Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 88, 135-143.
    74. Zhang, J., Liu, N., & Wang, S. (2021). Generative design and performance optimization of residential buildings based on parametric algorithm. Energy and Buildings, 244, 111033.
    75. Zhou, Y., Tam, V. W., & Le, K. N. (2023). Developing a multi-objective optimization model for improving building's environmental performance over the whole design process. Building and Environment, 246, 110996.
    76. Zhou, Y., Tam, V. W., & Le, K. N. (2023). Sensitivity analysis of design variables in life-cycle environmental impacts of buildings. Journal of Building Engineering, 65, 105749.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE