簡易檢索 / 詳目顯示

研究生: 徐滄益
Shyu, Chang-Yi
論文名稱: 光強梯度引致可空間調控雷射於染料摻雜膽固醇液晶薄膜之研究
Gradient-irradiation-induced spatially-tunable lasing emissions in dye-doped cholesteric liquid crystals
指導教授: 李佳榮
Lee, Chia-Rong
蔡錦俊
Tsai, Chin-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 95
中文關鍵詞: 染料摻雜膽固醇液晶空間調控
外文關鍵詞: spatially-tunable, dye-doped cholesteric liquid crystal
相關次數: 點閱:159下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文主要是使用染料摻雜膽固醇液晶製作一個由光引致、可空間調控輸出雷射波長的雷射元件,以平面膽固醇液晶結構作為共振腔,在樣品上的不同位置打入激發光,得到輸出不同波長的雷射訊號,其波長可涵蓋可見光的紅色到綠色範圍,最大可空間調控雷射波長範圍為134nm。在這個實驗中,我們主要使用一種光敏材料AzoM,藉由光致同素異構化來調控膽固醇液晶樣品的螺距來達到可空間調控雷射特性之目的。我們也發現光敏材料摻入具有不同旋性的膽固醇液晶後,反射波段會在照UV光後產生紅位移或藍位移,兩者皆可做成可空間調控輸出雷射波長的雷射元件。另外,此可空間調控特性於樣品上寫入後,可分別經由照射均勻綠光快速消除與經由熱自然緩慢消除,並且,在消除後,尚可再將可空間調控雷射特性寫入原樣品,因此是具有可消除與可覆寫可調控特性之雷射元件,此元件之功能凌駕於過去所研究過可空間調控元件之上。

    This thesis studies the gradient-radiation-induced spatially-tunable lasing emissions based on dye-doped cholesteric liquid crystal (DDCLC) films with a photochromatic chiral dopant. With continuously changing the irradiated position in the cell, the concentration of the cis-isomers of the photochromatic chiral dopant (AzoM) via transcis isomerization and thus the pitch of the cell can be continuously varied; in turn, the spatially-tunable lasing emission can be obtained. The maximum range of the wavelength-tunability for the obtained laser devices in this study is ~134 nm.
    Such a feature of the spatially-tunable lasing wavelength of the cell can be totally eased rapidly by the uniform illumination of a green beam and slowly by the thermal effect, respectively. After erased, the spatially-tunable feature can be re-recorded in the original cell using the same method. Thus, such a laser device is more flexible than those fabricated in the past, which spatially-tunability is not erasable and re-recordable.

    摘要.....................................................II Abstract................................................III 誌謝.....................................................IV 圖目錄.................................................VIII 表目錄...................................................XV 緒論......................................................1 第一章 液晶簡介...........................................3 1.1 何謂液晶............................................3 1.2 液晶的分類..........................................4 1.2.1 低分子液晶......................................4 1.2.2 高分子液晶.....................................13 1.3 液晶的物理性質.....................................14 1.3.1 液晶-異向性液體...............................14 1.3.2 液晶分子排列的秩序參數.........................15 1.3.3 光學異向性與雙折射性...........................18 1.3.4 介電異向性.....................................22 1.3.5 液晶的連續彈性體理論...........................25 1.3.6 溫度對液晶折射率的影響.........................26 第二章 相關理論機制......................................28 2.1 膽固醇液晶的光學特性...............................28 2.2 外在影響膽固醇液晶螺距的因素.......................29 2.3 平面膽固醇液晶結構—一維光子晶體...................32 2.4 摻雜雷射染料的膽固醇液晶雷射.......................36 2.5 偶氮染料的光致同素異構化反應.......................38 第三章 實驗方法及過程....................................40 3.1 材料介紹...........................................40 3.2 樣品製作...........................................49 3.2.1 空cell製作.....................................49 3.2.2 R811混合AzoM...................................49 3.2.3 S811混合AzoM...................................50 3.3 實驗光路架設.......................................51 第四章 實驗結果與討論....................................56 4.1 染料摻雜膽固醇液晶之可空間調控雷射特性-...........56 4.1.1 觀察照UV光過程中DDCLC樣品固定位置之反射頻譜的變化.......................................................56 4.1.2 具梯度強度UV光引致DDCLC樣品之可空間調控特性....59 4.2 染料摻雜膽固醇液晶之可空間調控雷射特性-...........65 4.2.1觀察照UV光過程中DDCLC樣品固定位置之反射頻譜的變化.......................................................65 4.2.2具梯度強度UV光引致DDCLC樣品之可空間調控特性.....68 4.3 染料摻雜膽固醇液晶之可空間調控雷射特性之可消除與可覆寫性.....................................................75 4.3.1 以綠光快速消除方式.............................75 4.3.2 經由熱自然消除方式.............................77 4.3.3 可空間調控雷射特性之可覆寫性...................79 4.4 S811混合AzoM之綠光逆向可空間調控雷射特性...........81 4.4.1觀察照綠光過程中DDCLC樣品固定位置之反射頻譜的變化.......................................................81 4.4.2具梯度強度綠光引致DDCLC樣品之可空間調控特性.....83 第五章 實驗結論與未來展望................................89 5.1 實驗結論...........................................89 5.2 未來展望...........................................90 參考文獻.................................................92

    1.Y. Matsuhisa, Y. Huang, Y. Zhou, and S. T. Wu, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15, 616 (2007).
    2.A. Chanishvili, G. Chilaya, G. Petriashvili, R. Bauberi, R. Bartolino, and G. Cipparrone, A. Mazzulla, L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: Two new tuning strategies,” Adv. Mater. 16, 282 (2004).
    3.A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez, L. Oriol, and M. Pinol, “Widely tunable ultraviolet-visible liquid crystal laser,” Appl. Phys. Lett. 86, 051107 (2005).
    4.Y. Huang, Y. Zhou, and S. T. Wu, “Spatially tunable laser emission in dye-doped photonic liquid crystals,” Appl. Phys. Lett. 88, 011107 (2006).
    5.K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Position-Sensitive Cholesteric Liquid Crystal Dye Laser Covering a Full Visible Range,” Jpn. J. Appl. Phys. 36, pp. L874–L876 (2007).
    6.P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals,” Oxford University Press, New York, Second edition, Chap. 2. (1993).
    7.松本正一,角田市良,“液晶之基礎與應用”,復文書局(1991)。
    8.P. J. Collings and M. Hird原著,楊怡寬,郭蘭生,鄭殷立編譯,“液晶化學及物理入門”,偉明圖書,第一版(2001)。
    9.葛士瑋,“利用應力調製聚合物混合液晶薄膜光柵製作可調式分光元件”,國立成功大學光電科學與工程研究所碩士論文(2007)。
    10.M. Blinov and V.G. Chigrinov, “Electroopic Effects in Liquid Crystal Materials,” Springer-Verlag, New York (1994).
    11.F. Reintzer, Monatsh. Chem 9, 421 (1888).
    12.Latter from F. Reintzer to O. Lehmann, reported by H. Keller, Mol. Cryst. Liq. Cryst. 21, 1 (1972).
    13.Data sheet from ROCHE Co., “How to dope liquid crystal mixtures.”
    14.B. Bahadur, Liquid Crystals-Applications and Uses, Vol.1, World Scientific, Singapore (1990).
    15.J.L.Fergason, Society for Information Display (SID) International Symposium Digest of Technical Paper 16, 68 (1985).
    16.J.W.Doane,A. Vaz, B-g. Wu and S. Zummer, Appl. Phys. Lett. 48, 269 (1986).
    17.J. West, Mol. Cryst. Liq. Cryst. 157, 427 (1988).
    18.R. L. Sutherland, SPIE proc. 1080, 83 (1989).
    19.B.-G. Wu, J. H. Erdmann and J. W. Doane, Liq. Cryst. 5, 1453 (1989).
    20.C. Kittel and H. Kroemer, “Thermal Physics,” W. H. Freeman and Company, San Francisco, Second edition, Chap. 2 (1980).
    21.I. C. Khoo, “Liquid Crystals,” John Wiley & Sons, New York (1995).
    22.P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals,” 2nd ed., Clarendon Press, Oxford (1993).
    23.陳怡君,“對膽固醇液晶雷射輸出大範圍調控之研究”,國立成功大學物理研究所碩士論文(2005)。
    24.R. B. Meyer, Appl. Phys. Lett. 12, 281 (1968).
    25.W. Helfrich, Phys. Rev. Lett. 23, 372 (1969).
    26.L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springer-Verlag, New York (1994).
    27.P. G. de Gennes, Sol. State Commun. 6, 163 (1968).
    28.J. P. Dowling, J. Appl. Phys. 75, 1896 (1994).
    29.V. I. Koop, Opt. Lett. 23, 1707 (1998).
    30.A. Munoz F, Opt. Lett. 26, 804 (2001)
    31.L. S. Goldberg and J. M. Schnur, U.S. patent 3, 771, 065 (1973).
    32.Heino Finkelmann, Adv. Matter. 14, 1069 (2001).
    33.Jui-Hsiang Liu and Hung-Yu Wang, J. Appl. Polym. Sci. 91, 789 (2004).
    34.J. H. Liu and P. C. Yang, “Synthesis and characterization of novel monomers and polymers containing chiral (-)-menthyl groups,” Polymer 47, 4925–4935 (2006).
    35.楊博智,“光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討”,國立成功大學化學與工程學系博士論文(2007)。

    下載圖示 校內:2010-07-29公開
    校外:2012-07-29公開
    QR CODE