簡易檢索 / 詳目顯示

研究生: 高研碩
Kao, Yen-Shuo
論文名稱: 奈米疲勞破壞之理論研究與實驗驗證
The theoretical study and experimental verification on the nano-fatigue of hardmaterials
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 奈米疲勞
外文關鍵詞: fatigue, nanoscale
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米壓痕是最近發展出的技術,一種量測薄膜的機械性質的新方法。當薄膜厚度愈來愈薄之時,微硬度試驗實驗上有它的缺陷,因此奈米壓痕技術隨即受到注目。其利用負載與壓痕深度的關係圖,來求得薄膜的機械性質,本研究還施以動態負載的方式,希望藉由動態負載對複合試片的產生疲勞破壞,來建構奈米級的疲勞破壞理論。
    而本研究探討疲勞破壞,期望能提出有效方式預測材料之疲勞破壞,由計算複合材料受到動態負載時產生之變形能深入,即為試件抵抗彈性變形(可回復)與塑性變形(不可回復)的能量表現。無論何種材料其實皆有其可接受程度的變形,一旦超越可接受程度的變形,便產生破壞或斷裂。由此可考慮材料的變形能實有個固定上限,當單位體積內產生的變形能一旦突破上限,薄膜便可能會產生破裂,此值我們以破壞變形能(Wc)來表示。但影響材料破壞之因素太多,所以本研究利用能量區間來判斷破壞變形能量之範圍。由實驗數據配合理論得證無論操作條件如何變動,破壞變形能(Wc)始終包含在固定之能量區間,如此便能有效判斷材料發生破壞的可能性。且破壞變形能(Wc)為塑性變形能(Wp)和彈性變形能(Wc)之和,當平均負載較低,即塑性變形能較低,如此材料欲破裂,需由動態加載來滿足變形能,即彈性變形能(Wc)。

    Mechanical properties of nanoscale structures are needed to design reliable micro/nanoelectromechanical systems (MEMS/NEMS). Most material properties are known to be size-dependent and such properties of the nanoscale structures have not been well characterized. Load cycles used in continuous stiffness measurement were not used to perform fatigue tests. The contact stiffness was monitored continuously throughout the fatigue test, but the contact stiffness can’t use to larger amplitude of oscillating. Cleavage steps were found on the fatigue fracture surface. The dynamic nanoindentation fatigue test used in this study can be satisfactorily used to evaluate the fatigue behavior of nanoscale structures for use in MEMS/NEMS.
    Deformation energy that can’t endure. The maximum deformation energy is the sum of plastic deformation energy and elastic deformation energy .Energy-based conditions on the inelastic surface deformation of brittle materials are conduced. The hysteresis loop energy which is dissipated during the indentation loading-unloading cycle is related to the true hardness . And we try to use hysteresis loop energy to evaluate the film fracture of fatigue.

    中文摘要 І 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 4 1-4 本文架構 5 第二章 基本理論 6 2-1 掃描探針顯微術 6 2-1-1概述 6 2-1-2硬度與彈性模數理論建立 6 2-2奈米壓痕試驗之材料變形能量 13 2-2-1概述 13 2-2-2變形能量法 13 2-3震盪負載條件的壓痕實驗 18 2-3-1概述 18 2-3-2修正的Voigt模型 19 2-3-3彈性與塑性變形部分的壓深解 21 2-3-4震盪負載條件的壓痕 22 2-4疲勞破壞理論 29 2-4-1概述 29 2-4-2運用能量法探討疲勞破壞 30 第三章 實驗方法與步驟 45 3-1實驗目的 45 3-2實驗內容 45 3-3實驗儀器 46 3-4實驗步驟 46 第四章 結果與討論 54 4-1引言 54 4-2材料性質與壓頭幾何形狀的複合參數 54 4-3相位落後 57 4-4疲勞破壞 59 第五章 結論與未來研究方向 82 5-1引言 82 5-2結論 82 5-3未來研究方向 83 參考文獻 84 自述 90

    1. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., Vol.7 (1992), pp.1564-1583
    2. W. C. Oliver and G. M. Pharr, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation:Advances in Understanding and Refinements to Methodology.”, J. Mater. Res., Vol.19 (2004), pp.3-20
    3. R. Saha and W. D. Nix, “Soft Films on Hard Substrates-Nanoindentation of Tungsten Filmson Sapphire Substrates.”, Mater. Sci. Eng. A, Vol. 319-321 (2001), pp. 898-901
    4. R. Saha and W. D. Nix, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation.”, Acta Materialia, Vol.50 (2002), pp.23-38
    5. M. Sakai, “Energy Principle of The Indentation-Induced Inelastic Surface Deformation and Hardness of Brittle Materials”, Acta metal. Mater., Vol. 41, No.6 (1993), pp. 1751-1758
    6. Z. Liu, J. Sun and W. Shen,“Study of Plowing and Friction at the Surfaces of Plastic Deformed Metals.”, Tribo. Inter., Vol.35 (2002), pp.511-522
    7. E. S. Puchi-Cabrera, “A New Model for the Computation of the Composite Hardness of Coated System.” , Surf. and Coat. Tech., Vol.160 (2002), pp.177-186
    8. T. H. Fang and W. J. Chang, “Nanomechanical Properties of CopperThin Films on Different Substrates Using the Nanoindentation Technique.” Microele. Eng., Vol.65 (2003), pp.231-238
    9. F. Bahr, D. E. Kramer, W. W. Gerberich, “Non-Linear Deformation Mechanisms During Nanoindentation”, Acta mater., Vol. 46, No. 10 (1998), pp. 3608-3617
    10. G. Zhou, “The Use of Experimentally-Determoned Impact Force As A Damage Measure In Impact Damage Resistance and Tolerance of Composite Structure”, Composite Structures, Vol. 42 (1998), pp. 375-382
    11. Jianning Ding, Yonggang Meng, Shizhu Wen, “Mechanical Properties and Fracture Toughness of Multilayer Hard Coating Using Nanoindentation”, Thin Solid Films, Vol. 371 (2000), pp. 178-182
    12. A. Karimi, Y. Wang, T. Cselle, M. Morstein, “Facture Mechanisms in Nanoscale Layered Hard Thin Films”, Thin Solid Films, 420-421 (2002), pp. 275-280
    13. Xiaodong Li, Bharat Bhushan, “Development of A Nanoscale Fatigue Measurement Technique and Its Application to Ultrathin Amorphous Carbon Coatongs”, Scripta Materialia, Vol. 47 (2002), pp. 473-479
    14. Xiaodong Li, Bharat Bhushan, “Fatigue Studies of Nanoscale Structures for MEMS/NEMS Applications Using Nanoindemtation Techniques”, Surface and Coatings Technology, 163-164 (2003), pp. 521-526
    15. Ben D. Beake, Stephen R. Goodes, James F. Smith, “Nanoscale Repetitive Impact Testing of Polymer Films”, J. Mater. Res., Vol. 19, No. 1 (2004)
    16. Ben D. Beake, S. P. Lau, James F. Smith, “Evaluating the Fracture Properties and Fatigue Wear of Tetrahedral Amorphous Carbon Films on Silicon by Nano-Impact Testing”, Surface and Coatings Technology, 177-178 (2004), pp. 611-615
    17. A.E.H. Love, Q.F. Math., Vol. 10 (1939), pp. 161.
    18. Tabor, D.; 1951, Hardness of Metals, 3rd ed. Oxford University Press, Amen House, London.
    19. W. C. Oliver, G. M. Pharr, “Nanoindentation of Soft Films on Hard Substrates: The Importance of Pile-Up”, Mat. Res. Soc. Symp. Proc. Vol. 436 (1997), pp. 207-212
    20. G.M. Pharr, W.C. Oliver and F.R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., Vol. 7, 1992, pp. 613-617
    21. Tom Juliano, Yury Gogotsi, Vladislav Domnich, “Effect of Indentation Unloadind Conditions on Phase Transformation Induced Events in Silicon”, J. Mater. Res., Vol. 18, No. 5 (2003), pp. 1192-1201
    22. Zhiyong Li, Y.-T. Cheng, Henry T. Yang, S. Chandrasekar, “On Two Indentation Hardness Definitions”, Surface and Coating Technology 154 (2002), pp. 124-130
    23. A. E. Giannakopoulos, S. Suresh, “Determination of Elastic Properties by Instrumented Sharp Indentation”, Scripta Materialia, Vol. 40, No. 10 (1999), pp. 1191-1198
    24. W. W. Gerberich, J. C. Nelson, E. T. Lilleodden, P. Anderson, J. T. Wyrobek, “Indentation Induced Dislocation Nucleation: The Initial Yield Point”, Acta mater., Vol. 44, No.9 (1996), pp. 3585-3598
    25. W. W. Gerberich, S. K. Venkatarman, H. Huang, S. E. Harvey, D. L. Kohlstedt, “The Injection of Plasticity by Millinewton Contacts”, Acta metal. mater., Vol. 43, No.4 (1995), pp. 1569-1576
    26. N. A. Burnham, S. P. Baker, H. M. Pollock, “Model for Mechanical Properties Nanoprobes”, J. Mater. Res., Vol. 15, No. 9 (2000), pp. 2006-2014
    27. Michelle L. Oyen, Robert F. Cook, “Load-Displacement Behavior During Sharp Indentation of Viscous-Elastic-Plastic Materials”, J. Mater. Res., Vol. 18, No. 1 (2003), pp. 139-150
    28. Moody Neville R., Materials Research Society., “Fundamentals of Nanoindentation and Nanotribology”, Symposium Held April 13-17, 1998, San Francisco, California, U.S.A.
    29. I. N. Sneddon, 〝The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for A Punch of Arbitrary Profile〞, Int. J. Engng Sci., Vol.3 (1965), pp.47-57
    30. G. M. Pharr, W. C. Oliver and F. R. Brotzen, 〝On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation〞, J. Mater. Res., Vol.7 (1992), pp.613-617
    31. Baker Shefford P., “Fundamentals of nanoindentation and nanotribology II”, Symposium Held November 28-30, 2000, Boston, Massachusetts, U.S.A.
    32. Berndt Christopher C., “Nanomaterials for structural applications”, Symposium Held December 2-6, 2002, Boston, Massachusetts, U.S.A.
    33. Bahr David F., “Mechanical properties derived from nanostructuring materials”, Symposium Held April 22-25, 2003, San Francisco, California, U.S.A.
    34. Osgood Cral C., “Fatigue Design”, Pergamon Press, (1982)
    35. 賴耿陽,” 最新彈塑性學”, 臺灣復文興業, (2000)
    36. Broek David, “基本工程破裂力學”, 國立編譯館, (1995)
    37. 沈成康, “斷裂力學”, 同濟大學出版社出版, (1996)
    38. 楊廣里, “斷裂力學及應用”, 中國鐵道, (1990)
    39. 黃忠良, “衝擊工學”, 復漢出版社, (1989)
    40. Krausz A. S., Krausz, K., “Fracture kinetics of crack growth”, Kluwer Academic Publishers (1988)
    41. Suresh S., “Fatigue of materials”, Cambridge University Press, (1991)
    42. Collins J. A., “Failure of materials in mechanical design :analysis, prediction, prevention”, (1993)
    43. Meyers Marc A., “Dynamic behavior of materials”, Wiley, New York, (1994)
    44. Zukas Jonas A., “High velocity impact dynamics”, Wiley, New York, (1990)
    45. Parton V. Z., Hetnarski Richard B., Boriskovski, “Dynamic fracture mechanics”, Hemisphere Pub. Corp., (1989)
    46. A. C. Fischer-Cripps, 〝Simulation of Sub-Micron indentation Tests with Spherical and Berkovich Indenters〞, J. Mater. Res., Vol.16, No.7, pp.2149-2157(2001).
    47. A. C. Fischer-Cripps, 〝Nanoindentation〞, Springer-Verlag, New York, (2002).
    48. 潘錦昌,“低溫離子束沈積含氮類鑽碳薄膜之微-奈米機械、材料性質及磨潤性能之研究” , 國立成功大學, 碩士論文, (2002)
    49. 陳冠維,“掃描式探針顯微鏡摩擦力檢測應用於不繡鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測” , 國立成功大學, 碩士論文, (2003)
    50. 劉政良,“分子動力學運用於薄膜機械性質之際量與實驗” , 國立成功大學, 碩士論文, (2004)
    51. 魏伯任,“奈米壓痕實驗運用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測-理論分析與實驗驗證”, 國立成功大學, 博士論文, (2005)

    下載圖示 校內:2006-07-29公開
    校外:2006-07-29公開
    QR CODE