簡易檢索 / 詳目顯示

研究生: 白語學
Kristiadi, Bergas
論文名稱: 以聚乙烯醇固定化Klebsiella sp. Zmd 30細胞進行1,3丙二醇及2,3丁二醇之醱酵生產
Fermentative Production of 1,3 PDO and 2,3 BDO using poly-vinyl-alcohol immobilized cells of Klebsiella sp. ZMD30
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 85
中文關鍵詞: 1,3-丙二醇2,3-丁二醇克雷氏桿菌醱酵固定化細胞聚乙烯醇
外文關鍵詞: 1,3-Propanediol, 2,3-Butanediol, Klebsiella sp. ZMD30, fermentation, immobilized cells, polyvinyl alcohol
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1,3-丙二醇 (1,3-Propanediol ;1,3-PDO) 是一種重要的化學原料(platform chemical),且廣泛應用於化妝品、食品、潤滑及製藥工業。2,3-丁二醇 (2,3-butanediol; 2,3-BDO)亦是一種常被應用於化妝品、食品、塑膠、保健、及能源的原料。1,3-丙二醇及 2,3-丁二醇可經由微生物發酵程序或是化學合成來取得。相較於化學合成所需的高溫(90°C)、高壓(1500 psi)、及昂貴觸媒(鈷)等反應條件,微生物發酵程序僅需在溫和條件下反應,故此程序極具潛力。 Klebsiella sp. Zmd30 被選用為生產1,3-丙二醇及2,3-丁二醇之菌株,乃因該菌株具有良好之甘油耐受度及1,3-PDO與2,3-BDO 之生產能力。
    本研究中,利用聚乙烯醇(poly-vinyl-alcohol; PVA)來固定化 Klebsiella sp. Zmd30 細胞將生質料源轉化為1,3-PDO及2,3-BDO產物。且在pH為6、攪拌速度200rpm、溫度30oC及曝空氣1 vvm之最適條件下可獲的高生產速率。
    首先利用聚乙烯醇固定化不同之Klebsiella sp. Zmd30細胞量(cell loading)、不同的固定化載體量(particle loading)及曝氣量(aeration rate),來進行1,3-丙二醇之生產。研究結果顯示,1,3-丙二醇生產之最佳固定化細胞量為0.28 g cells/g PVA 可得最高生產速率為 0.788 g/L/h。在固定化載體量為20% (w/v),產率(yield)為0.6 mol 1,3-PDO /mol glycerol,生產速率為1.5 g/L/h及最高產物濃度可達20 g/L。在曝氣量1 vvm之生產結果優於0 vvm。在Klebsiella sp. ZMD30固定化細胞之重複使用程序試驗發現,細胞固定化技術可增加操作穩定性及細胞的可再用性,其固定化細胞可重複利用四次,且生產速率依然可達初次使用之70 %。
    接著,本研究亦探討利用聚乙烯醇固定化細胞及葡萄糖為料源生產2,3-丁二醇,其中Klebsiella sp. Zmd30生產所探討之變數,亦和1,3-丙二醇之生產相同,即細胞量(cell loading)、固定化載體量(particle loading)及曝氣量(aeration rate)。研究結果顯示,2,3-丁二醇生產之最佳固定化細胞量為0.28 g cells/g PVA 可得最高生產速率為 4.0 g/L/h。在固定化載體量為20% (w/v),產率(yield)為
    IV
    0.6mol 2,3-BDO/mol glucose,生產速率為1.85 g/L/h及最高產物濃度可達10.2 g/。如同前述,在曝氣量1 vvm之生產結果優於不曝氣 (0 vvm)。

    1,3-Propanediol (1,3-PDO), an important platform chemical, is widely used in cosmetic, food, lubricant, and pharmaceutical industries. 2,3-BDO (2,3-butanediol) is a key ingredient used in a variety of industries, such as food, cosmetics, pharmaceuticals, plastics, health care and energy. 1,3-PDO and 2,3 BDO can be produced by microbial fermentation or chemical synthesis processes. Fermentative production is more favorable since they can be produced under moderate reaction conditions via fermentation, while chemical synthesis requires higher temperature (90°C), pressure (1500 psi), and expensive catalysts (such as cobalt). In this study, Klebsiella sp. Zmd30 is employed for the fermentative production of 1,3-PDO and 2,3-BDO, since it has an outstanding tolerance for high concentrations of glycerol.
    The fermentation was carried out using poly-vinyl-alcohol (PVA) immobilized Klebsiella sp. Zmd30 and renewable feedstock. High productivity was obtained under optimum condition (pH 6; agitation 200 rpm; 30oC; and aeration with fresh air 1 vvm).
    In this study, we focused on the production of the 1,3-PDO using PVA immobilized cells of Klebsiella sp. Zmd30 with different cell loading, particle loading, and aeration rate. The optimum cell loading for 1,3-PDO was 0.28 g cells/g PVA leading to a maximum productivity of 0.788 g/l/h. In terms of particle loading, 20% (w/v) was the optimum particle loading with yield, productivity, and maximum concentration 0.6 mol/mol glycerol, 1.5 g/l/h and 20 g/l. Aeration at 1 vvm showed better performance than that of fermentation without aeration (0 vvm). Applying immobilized cells of Klebsiella sp. ZMD30 and employing reactivation in between considerably enhanced the operational stability and reusability of the cells. The immobilized cells could be used for four cycles and 70% of the initial productivity could be achieved compared to the first cycle.
    The production of 2,3-BDO using PVA immobilized cells of Klebsiella sp. Zmd30 from glucose was studied. The variables employed are the same as used in 1,3-PDO production which are, different cell loading, particle loading, and aeration rate. The optimum cell loading for 2,3-BDO was 0.28 g cells/g PVA, leading to a maximum
    VI
    productivity of 4.0 g/l/h. In terms of particle loading, 20% (w/v) was the optimum amount of particle loading, which leads to 0.6 mol 2,3-BDO/mol glucose, a maximum concentration of 10.2 g/l, and a maximum productivity of 1.85 g/l/h. Aeration at 1 vvm showed better performance than that of fermentation without aeration (0 vvm).

    TABLE OF CONTENTS 中文摘要..................................................... ...................................................................I Abstract.........................................................................................................................III Acknowledgement .......................................................................................................VI Contents.....................................................................................................................VIII List of Tables................................................................................................................XI List of Figures..............................................................................................................XII Chapter 1INTRODUCTION..........................................................................................1 1.1Motivation and Purpose.............................................................................................1 1.2Research Scheme.......................................................................................................2 Chapter 2 LITERATURE REVIEW...............................................................................5 2.1 Production of 1,3-Propanediol..................................................................................5 2.1.1 Properties of 1,3-Propanediol.................................................................................6 2.1.2 Chemical synthesis of 1,3-Propanediol..................................................................6 2.1.3 Microbial production of 1,3-Propanediol...............................................................7 2.2 Production of 2,3-Butanediol....................................................................................8 2.2.1 Properties of 2,3-Butanediol...................................................................................9 2.2.2 Microbial production of 2,3-Butanediol...............................................................10 2.3. Immobilization of microbial cells for fermentation...............................................11 2.4 Glycerol...................................................................................................................13 2.5 Fermentation modes................................................................................................14 2.6 Factors affecting the production of 1,3PDO and 2,3 BDO......................................15 Chapter 3 MATERIALS AND METHODS..................................................................17 3.1 Chemicals and Materials.........................................................................................17 3.2 Equipment...............................................................................................................18 3.3 Microorganisms and Mediums................................................................................20 3.3.1 Diols-producing bacteria......................................................................................20 3.3.1.1 Culture medium for 1,3-PDO production..........................................................20 3.3.2 Culture medium for 2,3-BDO production............................................................21 3.4 Analytical methods. ................................................................................................22 X 3.4.1 Measurement of soluble component concentration..............................................22 3.4.2 Measurement of Cell Concentration.....................................................................23 3.4.3 Analysis of transient behavior by modified Gompertz equation..........................23 3.4.4 Measurement of product yield, productivity, and sugar consumption.................24 3.5 Experimental Methods............................................................................................25 3.5.1 Immobilization of bacterial cells..........................................................................25 3.5.2 Effect of the cell loading on the 1,3-Propanediol production in batch fermentation using PVA-immobilized Klebsiella sp. ZMD30...........................................................25 3.5.3 Effect of the particle loading on the 1,3-Propanediol production in batch fermentation using PVA-immobilized Klebsiella sp. ZMD30......................................26 3.5.4 Effect of the Aeration rate on the 1,3-Propanediol production in batch fermentation using PVA-immobilized Klebsiella sp. ZMD30......................................26 3.5.5 Effect of the cell loading on the 2,3-Butanediol production in batch fermentation using PVA-immobilized Klebsiella sp. ZMD30...........................................................26 3.5.6 Effect of the particle loading on the 2,3-Butanediol production in batch fermentation using PVA-immobilized Klebsiella sp. ZMD30.....................................27 3.5.7 Effect of the Aeration rate on the 2,3-Butanediol production in batch fermentation using PVA-immobilized Klebsiella sp. ZMD30...........................................................27 Chapter 4 RESULTS AND DISCUSSION...................................................................28 4.1 Production of 1,3-Propanediol.................................................................................28 4.1.1 Conversion of 1,3-Propanediol from Glycerol from Klebsiella sp. ZMD30 using suspended cells..............................................................................................................28 4.1.2 Conversion of 1,3-Propanediol from Glycerol using Immobilized Cells..............29 4.1.2.1 Cell Loading optimization for 1,3 Propanediol..................................................32 4.1.2.2 Particle Loading Optimization for 1,3 Propanediol...........................................39 4.1.2.3 Aeration Optimization for 1,3-Propanediol.......................................................45 4.1.2.4 Particle Reusability of 1,3-Propanediol Immobilized Cells...............................51 4.2 Production of 2,3-Butanediol..................................................................................55 4.2.1 Conversion of 2,3-Butanediol from Glucose from Klebsiella sp. ZMD30 using suspended cells..............................................................................................................55 XI 4.2.2 Conversion of 2,3-Butanediol from glucose using Immobilized Cells................57 4.2.2.1 Cell Loading optimization for 2,3-Butanediol..................................................59 4.2.2.2 Particle Loading Optimization for 2,3-Butanediol............................................66 4.2.2.3 Aeration Optimization for 2,3-Butanediol........................................................71 4.3 Summary the result of 1,3-Propanediol and 2,3-Butanediol...................................75 Chapter 5 CONCLUSION............................................................................................78 REFERENCES.............................................................................................................80

    Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2011a). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156(4), 286-301.
    Abdel-Rahman, M. A., YukihiroTashiro, & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31, 877-902.
    Biebl, H., Menzel, K., Zeng, A.-P., & Deckwer, W.-D. (1999). Microbial production of 1, 3-propanediol. Applied microbiology and biotechnology, 52(3), 289-297.
    Biebl, H., Zeng, A.-P., Menzel, K., & Deckwer, W.-D. (1998). Fermentation of glycerol to 1, 3-propanediol and 2, 3-butanediol by Klebsiella pneumoniae. Applied microbiology and biotechnology, 50(1), 24-29.
    Celińska, E., & Grajek, W. (2009). Biotechnological production of 2, 3-butanediol current state and prospects. Biotechnology advances, 27(6), 715-725.
    Chen, Z., Liu, H.-J., Zhang, J.-A., & Liu, D.-H. (2009). Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic conditions. Process Biochemistry, 44(8), 862-868.
    Cheng, K.-K., Liu, D.-H., Sun, Y., & Liu, W.-B. (2004). 1, 3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnology letters, 26(11), 911-915.
    da Silva, G. P., de Lima, C. J. B., & Contiero, J. (2015). Production and productivity of 1, 3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catalysis Today, 257, 259-266.
    Dietz, D., & Zeng, A.-P. (2014). Efficient production of 1, 3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess and biosystems engineering, 37(2), 225-233.
    Ding, S., & Tan, T. (2006). l-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochemistry, 41(6), 1451-1454. doi:https://doi.org/10.1016/j.procbio.2006.01.014
    81
    Dong, T.-T., Gong, J.-S., Gu, B.-C., Zhang, Q., Li, H., Lu, Z.-M., . . . Xu, Z.-H. (2017). Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresource technology, 244, 1104-1110.
    Gaspar, P., Neves, A. R., Gasson, M. J., Shearman, C. A., & Santos, H. (2011). High yields of 2, 3-butanediol and mannitol in Lactococcus lactis through engineering of NAD+ cofactor recycling. Applied and environmental microbiology, 77(19), 6826-6835.
    Genisheva, Z., Teixeira, J., & Oliveira, J. (2014). Immobilized cell systems for batch and continuous winemaking. Trends in food science & technology, 40(1), 33-47.
    Goncalves, L. M. D., Barreto, M. T. O., Xavier, A. M. B. R., Carrondo, M. J. T., & Klein, J. (1992). Inert supports for lactic acid fermentation a technological assessment. Applied Microbiology and Biotechnology, 38(3), 305-311.
    Jeong, D., Cho, K., Lee, C.-H., Lee, S., & Bae, H. (2016). Integration of forward osmosis process and a continuous airlift nitrifying bioreactor containing PVA/alginate-immobilized cells. Chemical Engineering Journal, 306, 1212-1222.
    Ji, X.-J., Huang, H., & Ouyang, P.-K. (2011). Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnology advances, 29(3), 351-364.
    Jiang, L., Liu, H., Mu, Y., Sun, Y., & Xiu, Z. (2017). High tolerance to glycerol and high production of 1, 3‐propanediol in batch fermentations by microbial consortium from marine sludge. Engineering in Life Sciences, 17(6), 635-644.
    Jurchescu, I.-M., Hamann, J., Zhou, X., Ortmann, T., Kuenz, A., Prüße, U., & Lang, S. (2013). Enhanced 2, 3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Applied microbiology and biotechnology, 97(15), 6715-6723.
    Kaszonyi, A., & Štolcová, M. (2009). Bioglycerol a new platform chemical. Paper presented at the 44th international petroleum conference.
    Kim, S.-J., Seo, S.-O., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2014). Production of 2, 3-butanediol from xylose by engineered Saccharomyces cerevisiae. Journal of biotechnology, 192, 376-382.
    82
    Kim, Y. J., Joo, H. W., Park, J., Kim, D. K., Jeong, K. J., & Chang, Y. K. (2015). Production of 2, 3‐butanediol by Klebsiella oxytoca from various sugars in microalgal hydrolysate. Biotechnology progress, 31(6), 1669-1675.
    Kivistö, A., Santala, V., & Karp, M. (2012). 1, 3-Propanediol production and tolerance of a halophilic fermentative bacterium, Halanaerobium saccharolyticum subsp. saccharolyticum. Journal of biotechnology, 158(4), 242-247.
    Kraus, G. A. (2008). Synthetic Methods for the Preparation of 1, 3‐Propanediol. CLEAN–Soil, Air, Water, 36(8), 648-651.
    Lee, C., Aroua, M., Daud, W., Cognet, P., Pérès-Lucchese, Y., Fabre, P., . . . Latapie, L. (2015). A review: conversion of bioglycerol into 1, 3-propanediol via biological and chemical method. Renewable and Sustainable Energy Reviews, 42, 963-972.
    Lee, S. J., Choi, H. S., Kim, C. K., Thapa, L. P., Park, C., & Kim, S. W. (2017). Process strategy for 2, 3-butanediol production in fed-batch culture by acetate addition. Journal of Industrial and Engineering Chemistry, 56, 157-162.
    Liakou, V., Pateraki, C., Palaiogeorgou, A.-M., Kopsahelis, N., de Castro, A. M., Freire, D. M. G., . . . Koutinas, A. (2017). Valorisation of fruit and vegetable waste from open markets for the production of 2, 3-butanediol. Food and Bioproducts Processing.
    Lim, H. C., & Shin, H. S. (2013). Fed-Batch Cultures : Principles and Applications of Semi-Batch Bioreactors (7th ed.). New York: CAMBRIDGE UNIVERSITY PRESS.
    Lin, C. Y., & Lay, C. H. (2004). Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy, 19, 275-281.
    Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O., & da Silva César, A. (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109-122.
    Moon, C., Ahn, J.-H., Kim, S. W., Sang, B.-I., & Um, Y. (2010). Effect of biodiesel-derived raw glycerol on 1, 3-propanediol production by different microorganisms. Applied biochemistry and biotechnology, 161(1-8), 502-510.
    83
    Mu, Y., Yu, H. Q., & Wang, G. (2007). A kinetic approach to anaerobic hydrogen-producing process. Water Research, 41, 1152-1160.
    Nie, Z.-K., Ji, X.-J., Huang, H., Du, J., Li, Z.-Y., Qu, L., . . . Ouyang, P.-K. (2011). An effective and simplified fed-batch strategy for improved 2, 3-butanediol production by Klebsiella oxytoca. Applied biochemistry and biotechnology, 163(8), 946-953.
    Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. (2007). From glycerol to value‐added products. Angewandte Chemie International Edition, 46(24), 4434-4440.
    Park, J. K., & Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18(4), 303-319.
    Petrov, K., & Petrova, P. (2009). High production of 2, 3-butanediol from glycerol by Klebsiella pneumoniae G31. Applied microbiology and biotechnology, 84(4), 659-665.
    Przystałowska, H., Lipiński, D., & Słomski, R. (2015). Biotechnological conversion of glycerol from biofuels to 1, 3-propanediol using Escherichia coli. Acta Biochimica Polonica, 62(1).
    Qing, Y., Lu, H., Liu, Y., Liu, C., Liang, B., & Jiang, W. (2018). Production of glycerol carbonate using crude glycerol from biodiesel production with DBU as a catalyst. Chinese Journal of Chemical Engineering.
    Quispe, C. A., Coronado, C. J., & Carvalho Jr, J. A. (2013). Glycerol: production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493.
    Sabra, W., Quitmann, H., Zeng, A.-P., Dai, J.-Y., & Xiu, Z.-L. (2011). Microbial production of 2, 3-butanediol.
    Saxena, R., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1, 3-propanediol: recent developments and emerging opportunities. Biotechnology advances, 27(6), 895-913.
    Syu, M.-J. (2001). Biological production of 2, 3-butanediol. Applied microbiology and biotechnology, 55(1), 10-18.
    84
    Um, J., Kim, D. G., Jung, M.-Y., Saratale, G. D., & Oh, M.-K. (2017). Metabolic engineering of Enterobacter aerogenes for 2, 3-butanediol production from sugarcane bagasse hydrolysate. Bioresource technology, 245, 1567-1574.
    Van Ginkel, S., Sung, S. W., & Lay, J. (2001). Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology, 35, 4726-4730.
    Vivek, N., Pandey, A., & Binod, P. (2016). Biological valorization of pure and crude glycerol into 1, 3-propanediol using a novel isolate Lactobacillus brevis N1E9. 3.3. Bioresource technology, 213, 222-230.
    Vivek, N., Pandey, A., & Binod, P. (2017). Production and applications of 1, 3-propanediol Current developments in biotechnology and bioengineering (pp. 719-738): Elsevier.
    Wang, K., Hawley, M. C., & DeAthos, S. J. (2003). Conversion of glycerol to 1, 3-propanediol via selective dehydroxylation. Industrial & engineering chemistry research, 42(13), 2913-2923.
    Willke, T., & Vorlop, K. (2008). Biotransformation of glycerol into 1, 3‐propanediol. European Journal of Lipid Science and Technology, 110(9), 831-840.
    Yang, X., Choi, H. S., Lee, J. H., Lee, S. K., Han, S. O., Park, C., & Kim, S. W. (2018). Improved production of 1, 3-propanediol from biodiesel-derived crude glycerol by Klebsiella pneumoniae in fed-batch fermentation. Chemical Engineering Journal.
    Yang, X., Kim, D. S., Choi, H. S., Kim, C. K., Thapa, L. P., Park, C., & Kim, S. W. (2017). Repeated batch production of 1, 3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae. Chemical Engineering Journal, 314, 660-669.
    Yen, H.-W., Li, F.-T., & Chang, J.-S. (2014). The effects of dissolved oxygen level on the distribution of 1, 3-propanediol and 2, 3-butanediol produced from glycerol by an isolated indigenous Klebsiella sp. Ana-WS5. Bioresource technology, 153, 374-378.
    Yu, L., Cao, M.-y., Wang, P.-t., Wang, S., Yue, Y.-r., Yuan, W.-d., . . . Song, X. (2017). Simultaneous Decolorization and Biohydrogen Production from Xylose by
    85
    Klebsiella oxytoca GS-4-08 in the Presence of Azo Dyes with Sulfonate and Carboxyl Groups. Applied and environmental microbiology, 83(10), e00508-00517.
    Zeng, A.-P. (1996). Pathway and kinetic analysis of 1, 3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Engineering, 14(4), 169-175.
    Zeng, A.-P., & Biebl, H. (2002). Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends Tools and Applications of Biochemical Engineering Science (pp. 239-259): Springer.
    Zeng, A.-P., & Sabra, W. (2011). Microbial production of diols as platform chemicals: recent progresses. Current Opinion in Biotechnology, 22(6), 749-757.
    Zhang, G., Ma, B., Xu, X., Li, C., & Wang, L. (2007). Fast conversion of glycerol to 1, 3-propanediol by a new strain of Klebsiella pneumoniae. Biochemical Engineering Journal, 37(3), 256-260.
    Zhu, Y. (2007). Immobilized cell fermentation for production of chemicals and fuels Bioprocessing for Value-Added Products from Renewable Resources (pp. 373-396): Elsevier.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE