| 研究生: |
吳榮昭 Wu, Rong-Jhao |
|---|---|
| 論文名稱: |
兩相流數值方法及其對T型微管內液滴生成與分離之應用 Numerical Method for Two Phase Flows and its Application to Droplet Formation and Breakup in T-junction Microchannels |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 鬼流體方法 、四步分步算法 、動量內插 、壓力邊界法 、清晰界面張力模型 |
| 外文關鍵詞: | ghost fluid method, four-step fractional-step method, momentum interpolation, pressure boundary method, sharp surface tension force model |
| 相關次數: | 點閱:105 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展一個清晰界面算法計算模擬不可壓縮且不混溶之兩相流場。對於界面追蹤的部分,在流體體積法(VOF)的架構下,利用一個通量揉合策略結合上風與下風算則對每個網格格面決定其對流通量,並藉此保持界面的清晰度與形狀。同時,從流體體積函數重建一個符號距離函數,並藉此準確得到界面的曲率與法向向量。基於符號距離函數的資訊,使用一個質量回復技巧(MRT)來消除大於一或小於零之非物理量並同時保持質量守恆。在數值求解暫態不可壓縮之那威爾-史托克方程式方面,使用四步分步算法運用在同心結構網格系統並結合一個動量內插技巧去避免壓力棋盤狀之擾動現象。
在界面流問題當中,界面僞流之生成是一個經典的課題。據我所知,可歸因於三個因素:(1)由連續表面張力(CSF)模型所引進之有限厚度界面區域(2)界面幾何資訊的不準確性(3)界面的表面張力與壓力梯度的數值量之不平衡。在本研究中,奇異的表面張力被直接轉換成壓降形式,且不引進虛擬的界面厚度,同時將在界面不連續之動力黏度給平滑化。並使用鬼流體方法的陡降離散技巧來處理其他物理量之不連續性,同時壓降條件可藉由清晰界面張力(SSF)模型改寫成源項。
一個力量平衡的技巧被發展來確保界面的表面張力與壓力梯度的數值量之平衡。類似於壓力邊界法(PBM)的做法,藉由求解一個狄利克雷問題來獲得離散相中的毛細壓力場,並在數值計算上平衡表面張力,同時使用一個動態壓力場來滿足連續方程式。表面張力所導致之壓力不連續將使壓力的數值邊界條件變得更加複雜,尤其在出口邊界。但可藉由毛細與動態壓力場對壓力的數值邊界條件做出良好的定義與處理。在數值一致性方面,表面張力項與壓力梯度項皆在網格格面上做離散化,並在每一個時間步結合在一起做計算。
藉由各種標準測試範例驗證此計算方法之效率與準確度。本方法可成功計算二維T型管微管流,並進一步研究T 型管中液滴生成與分裂之物理問題。
A sharp interface method for simulating incompressible immiscible two-phase flows is presented in this thesis. Within the framework of volume of fluid (VOF), a flux-blending strategy based on the high resolution upwind and downwind schemes is utilized to determine the convective flux through each cell face and preserve both the interface sharpness and shape. A signed distance function is reconstructed from the VOF function to accurately obtain the interface curvature and normal vector. A mass recover technique, based on the distance information, is proposed to eliminate the overshoot/undershoot problem under the premise of mass conservation. The four-step fractional-step method, applied to a collocated structured grid system, is adopted to solve unsteady incompressible Navier-Stokes equations and coupling with a momentum interpolation technique to avoid the pressure checkerboard phenomenon.
In the interfacial flow problem, the generation of spurious currents near the interface is a classical issue. In our knowledge, it is attributed to three reasons: (i) the finite thickness interface region introduced by the continuous surface tension force (CSF) model,(ii) the inaccurate estimation of geometrical information, (iii) a numerical imbalance between the surface tension force and the associated pressure gradient. In this study, the singular surface tension force is directly transformed into the form of a pressure jump without introducing a fictitious interface thickness while numerically smearing out the dynamic viscosity jump condition. A sharp discretization technique of the ghost fluid method (GFM) is employed to deal with the discontinuous jump of material properties while the pressure jump condition can be rewritten as a source term by a sharp surface tension force (SSF) model.
A balanced-force technique is developed to ensure the numerical balance between the surface tension force and the associated pressure gradient. Similar to the pressure boundary method (PBM), a capillary pressure field within the dispersed phase is obtained from a Dirichlet problem to numerically balance the surface tension force while a dynamic pressure field is used to satisfy the continuity equation. After considering the discontinuity effect induced by the surface tension force, the numerical boundary condition for pressure becomes more complicated, especially in the outlet boundary, and can be well defined by these two pressure fields (capillary and dynamic). For numerical consistency, the surface tension force term and the pressure gradient are both discretized at the cell face and evaluated together at every time step.
The efficiency and accuracy of our method are validated by various benchmark problems. The presented numerical algorithm successfully simulates the two dimensional, microfluidic channels at T-junction and is used to investigate the droplet formation and the droplet breakup problems.
[1] Afkhami, S., Leshansky, A., Renardy, Y., 2011, "Numerical investigation of elongated drops in a microfluidic T-junction", Physics of Fluids (1994-present), Vol. 23, pp. 022002.
[2] Arias, S., Legendre, D., González-Cinca, R., 2012, "Numerical simulation of bubble generation in a T-junction", Computers & Fluids, Vol. 56, pp. 49-60.
[3] Bashir, S., Rees, J.M., Zimmerman, W.B., 2014, "Investigation of pressure profile evolution during confined microdroplet formation using a two-phase level set method", International Journal of Multiphase Flow, Vol. 60, pp. 40-49.
[4] Bourlioux, A., 1995, A coupled level-set volume-of-fluid algorithm for tracking material interfaces, in: Proceedings of the 6th International Symposium on Computational Fluid Dynamics, Lake Tahoe, CA.
[5] Brackbill, J., Kothe, D.B., Zemach, C., 1992, "A continuum method for modeling surface tension", Journal of computational physics, Vol. 100, pp. 335-354.
[6] Brackbill, J., Kothe, D., 1996, Dynamical modeling of surface tension, in, Los Alamos National Lab., NM (United States).
[7] Chiu, P.-H., Lin, Y.-T., 2011, "A conservative phase field method for solving incompressible two-phase flows", Journal of Computational Physics, Vol. 230, pp. 185-204.
[8] Choi, S.-K., Kim, S.-O., Lee, C.-H., Choi, H.-K., 2003, "Use of the momentum interpolation method for flows with a large body force", Numerical Heat Transfer: Part B: Fundamentals, Vol. 43, pp. 267-287.
[9] Cristini, V., Tan, Y.-C., 2004, "Theory and numerical simulation of droplet dynamics in complex flows—a review", Lab on a Chip, Vol. 4, pp. 257-264.
[10] Cummins, S.J., Francois, M.M., Kothe, D.B., 2005, "Estimating curvature from volume fractions", Computers & structures, Vol. 83, pp. 425-434.
[11] Darwish, M., Moukalled, F., 2006, "Convective schemes for capturing interfaces of free-surface flows on unstructured grids", Numerical Heat Transfer, Part B: Fundamentals, Vol. 49, pp. 19-42.
[12] Davidson, L., 1996, "A pressure correction method for unstructured meshes with arbitrary control volumes", International Journal for Numerical Methods in Fluids, Vol. 22, pp. 265-281.
[13] De Menech, M., Garstecki, P., Jousse, F., Stone, H., 2008, "Transition from squeezing to dripping in a microfluidic T-shaped junction", journal of fluid mechanics, Vol. 595, pp. 141-161.
[14] Desjardins, O., Moureau, V., Pitsch, H., 2008, "An accurate conservative level set/ghost fluid method for simulating turbulent atomization", Journal of Computational Physics, Vol. 227, pp. 8395-8416.
[15] Dupont, J.-B., Legendre, D., 2010, "Numerical simulation of static and sliding drop with contact angle hysteresis", Journal of Computational Physics, Vol. 229, pp. 2453-2478.
[16] Esmaeeli, A., Tryggvason, G., 1998, "Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays", Journal of Fluid Mechanics, Vol. 377, pp. 313-345.
[17] Esmaeeli, A., Tryggvason, G., 1999, "Direct numerical simulations of bubbly flows Part 2. Moderate Reynolds number arrays", Journal of Fluid Mechanics, Vol. 385, pp. 325-358.
[18] Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S., 1999, "A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)", Journal of computational physics, Vol. 152, pp. 457-492.
[19] Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sicilian, J.M., Williams, M.W., 2006, "A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework", Journal of Computational Physics, Vol. 213, pp. 141-173.
[20] Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M., 2006, "Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up", Lab on a Chip, Vol. 6, pp. 437-446.
[21] Ghia, U., Ghia, K.N., Shin, C., 1982, "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method", Journal of computational physics, Vol. 48, pp. 387-411.
[22] Glimm, J., Marchesin, D., McBryan, O., 1981, "A numerical method for two phase flow with an unstable interface", Journal of Computational Physics, Vol. 39, pp. 179-200.
[23] Gu, C., 1991, "Computation of flows with large body forces", Numerical Methods in Laminar and Turbulent Flow, Pineridge Press, Swansea, Vol. pp. 294-305.
[24] Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S., 1999, "Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows", Journal of Computational Physics, Vol. 152, pp. 423-456.
[25] Guo, F., Chen, B., 2009, "Numerical study on Taylor bubble formation in a micro-channel T-junction using VOF method", Microgravity Science and Technology, Vol. 21, pp. 51-58.
[26] Harlow, F.H., Welch, J.E., 1965, "Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface", Physics of fluids, Vol. 8, pp. 2182.
[27] Harvie, D.J., Fletcher, D.F., 2000, "A new volume of fluid advection algorithm: the stream scheme", Journal of Computational Physics, Vol. 162, pp. 1-32.
[28] Harvie, D.J., Fletcher, D.F., 2001, "A new volume of fluid advection algorithm: the defined donating region scheme", International Journal for Numerical Methods in Fluids, Vol. 35, pp. 151-172.
[29] Harvie, D.J., Davidson, M., Rudman, M., 2006, "An analysis of parasitic current generation in volume of fluid simulations", Applied mathematical modelling, Vol. 30, pp. 1056-1066.
[30] Heyns, J., Malan, A., Harms, T., Oxtoby, O., 2013, "Development of a compressive surface capturing formulation for modelling freesurface flow by using the volumeoffluid approach", International Journal for Numerical Methods in Fluids, Vol. 71, pp. 788-804.
[31] Hirt, C.W., Nichols, B.D., 1981, "Volume of fluid (VOF) method for the dynamics of free boundaries", Journal of computational physics, Vol. 39, pp. 201-225.
[32] Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L., 2009, "Quantitative benchmark computations of twodimensional bubble dynamics", International Journal for Numerical Methods in Fluids, Vol. 60, pp. 1259-1288.
[33] Jahanbakhsh, E., Panahi, R., Seif, M., 2007, "Numerical simulation of three-dimensional interfacial flows", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 17, pp. 384-404.
[34] Jullien, M.-C., Ching, M.-J.T.M., Cohen, C., Menetrier, L., Tabeling, P., 2009, "Droplet breakup in microfluidic T-junctions at small capillary numbers", Physics of Fluids (1994-present), Vol. 21, pp. 072001.
[35] Kang, M., Fedkiw, R.P., Liu, X.-D., 2000, "A boundary condition capturing method for multiphase incompressible flow", Journal of Scientific Computing, Vol. 15, pp. 323-360.
[36] Kashid, M.N., Renken, A., Kiwi-Minsker, L., 2010, "CFD modelling of liquid–liquid multiphase microstructured reactor: Slug flow generation", Chemical Engineering Research and Design, Vol. 88, pp. 362-368.
[37] Kim, D., Choi, H., 2000, "A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids", Journal of Computational Physics, Vol. 162, pp. 411-428.
[38] Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S., Zanetti, G., 1994, "Modelling merging and fragmentation in multiphase flows with SURFER", Journal of Computational Physics, Vol. 113, pp. 134-147.
[39] Lai, Y.G., 1997, "An unstructured grid method for a pressure-based flow and heat transfer solver", Numerical Heat Transfer, Vol. 32, pp. 267-281.
[40] Leonard, B., 1988, "Universal limiter for transient interpolation modeling of the advective transport equations: the ULTIMATE conservative difference scheme", Vol. pp.
[41] Leonard, B., 1991, "The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection", Computer methods in applied mechanics and engineering, Vol. 88, pp. 17-74.
[42] Leonard, B., Lock, A., MacVean, M., 1996, "Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes", Monthly Weather Review, Vol. 124, pp. 2588-2606.
[43] Leshansky, A., Pismen, L., 2009, "Breakup of drops in a microfluidic T junction", Physics of Fluids (1994-present), Vol. 21, pp. 023303.
[44] Li, Z., Kang, J., Park, J.H., Suh, Y.K., 2007, "Numerical simulation of the droplet formation in a cross-junction microchannel using the Lattice Boltzmann Method", Journal of mechanical science and technology, Vol. 21, pp. 162-173.
[45] Lien, F., Leschziner, M., 1994, "A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation", Computer methods in applied mechanics and engineering, Vol. 114, pp. 123-148.
[46] Lin, S.Y., Chin, Y.H., Wu, C.M., Lin, J.F., Chen, Y.C., 2012, "A pressure correctionvolume of fluid method for simulation of twophase flows", International Journal for Numerical Methods in Fluids, Vol. 68, pp. 181-195.
[47] Link, D., Anna, S.L., Weitz, D., Stone, H., 2004, "Geometrically mediated breakup of drops in microfluidic devices", Physical review letters, Vol. 92, pp. 054503.
[48] Liu, H., Zhang, Y., 2009, "Droplet formation in a T-shaped microfluidic junction", Journal of applied physics, Vol. 106, pp. 034906.
[49] Lopez, J., Hernandez, J., Gomez, P., Faura, F., 2005, "An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows", Journal of Computational Physics, Vol. 208, pp. 51-74.
[50] Ménard, T., Tanguy, S., Berlemont, A., 2007, "Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet", International Journal of Multiphase Flow, Vol. 33, pp. 510-524.
[51] Martin, J., Moyce, W., 1952, "Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane", Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 244, pp. 312-324.
[52] Mathur, S., Murthy, J., 1997, "A pressure-based method for unstructured meshes", Numerical Heat Transfer, Vol. 31, pp. 195-215.
[53] Mencinger, J., Žun, I., 2007, "On the finite volume discretization of discontinuous body force field on collocated grid: Application to VOF method", Journal of Computational Physics, Vol. 221, pp. 524-538.
[54] Muzaferija, S., Peric, M., Sames, P., Schellin, T., 1998, A two-fluid Navier-Stokes solver to simulate water entry, in: Proceedings of the 22nd symposium on naval hydrodynamics, Washington, DC, pp. 277-289.
[55] Noh, W.F., Woodward, P., 1976, SLIC (simple line interface calculation), in: Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede, Springer, pp. 330-340.
[56] Olsson, E., Kreiss, G., 2005, "A conservative level set method for two phase flow", Journal of computational physics, Vol. 210, pp. 225-246.
[57] Olsson, E., Kreiss, G., Zahedi, S., 2007, "A conservative level set method for two phase flow II", Journal of Computational Physics, Vol. 225, pp. 785-807.
[58] Osher, S., Chakravarthy, S., 1984, "High resolution schemes and the entropy condition", SIAM Journal on Numerical Analysis, Vol. 21, pp. 955-984.
[59] Osher, S., Sethian, J.A., 1988, "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations", Journal of computational physics, Vol. 79, pp. 12-49.
[60] Osher, S., Fedkiw, R.P., 2001, "Level set methods: an overview and some recent results", Journal of Computational physics, Vol. 169, pp. 463-502.
[61] Park, I., Kim, K., Kim, J., Van, S., 2009, "A volume of fluid method for incompressible free surface flows", International journal for numerical methods in fluids, Vol. 61, pp. 1331-1362.
[62] Popinet, S., Zaleski, S., 1999, "A fronttracking algorithm for accurate representation of surface tension", International Journal for Numerical Methods in Fluids, Vol. 30, pp. 775-793.
[63] Popinet, S., 2009, "An accurate adaptive solver for surface-tension-driven interfacial flows", Journal of Computational Physics, Vol. 228, pp. 5838-5866.
[64] Raad, P.E., Chen, S., Johnson, D.B., 1995, "The introduction of micro cells to treat pressure in free surface fluid flow problems", Journal of Fluids Engineering, Vol. 117, pp. 683-690.
[65] Raeini, A.Q., Blunt, M.J., Bijeljic, B., 2012, "Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method", Journal of Computational Physics, Vol. 231, pp. 5653-5668.
[66] Renardy, Y., Renardy, M., 2002, "PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method", Journal of Computational Physics, Vol. 183, pp. 400-421.
[67] Rhie, C., Chow, W., 1983, "Numerical study of the turbulent flow past an airfoil with trailing edge separation", AIAA journal, Vol. 21, pp. 1525-1532.
[68] Rudman, M., 1997, "Volume-tracking methods for interfacial flow calculations", International journal for numerical methods in fluids, Vol. 24, pp. 671-691.
[69] Rudman, M., 1998, "A volume-tracking method for incompressible multifluid flows with large density variations", International Journal for Numerical Methods in Fluids, Vol. 28, pp. 357-378.
[70] Son, G., 2003, "Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows", Numerical Heat Transfer: Part B: Fundamentals, Vol. 43, pp. 549-565.
[71] Sun, D., Tao, W., 2010, "A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows", International Journal of Heat and Mass Transfer, Vol. 53, pp. 645-655.
[72] Sussman, M., Smereka, P., Osher, S., 1994, "A level set approach for computing solutions to incompressible two-phase flow", Journal of Computational physics, Vol. 114, pp. 146-159.
[73] Sussman, M., Fatemi, E., Smereka, P., Osher, S., 1998, "An improved level set method for incompressible two-phase flows", Computers & Fluids, Vol. 27, pp. 663-680.
[74] Sussman, M., Puckett, E.G., 2000, "A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows", Journal of Computational Physics, Vol. 162, pp. 301-337.
[75] Sussman, M., 2003, "A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles", Journal of Computational Physics, Vol. 187, pp. 110-136.
[76] Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., Zhi-Wei, R., 2007, "A sharp interface method for incompressible two-phase flows", Journal of computational physics, Vol. 221, pp. 469-505.
[77] Thorsen, T., Roberts, R.W., Arnold, F.H., Quake, S.R., 2001, "Dynamic pattern formation in a vesicle-generating microfluidic device", Physical review letters, Vol. 86, pp. 4163.
[78] Tong, A.Y., Wang, Z., 2007, "A numerical method for capillarity-dominant free surface flows", Journal of Computational Physics, Vol. 221, pp. 506-523.
[79] Torres, D., Brackbill, J., 2000, "The point-set method: front-tracking without connectivity", Journal of Computational Physics, Vol. 165, pp. 620-644.
[80] Torrey, M.D., Cloutman, L.D., Mjolsness, R.C., Hirt, C., 1985, NASA-VOF2D: A computer program for incompressible flows with free surfaces, in, Los Alamos National Lab., NM (USA).
[81] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J., 2001, "A front-tracking method for the computations of multiphase flow", Journal of Computational Physics, Vol. 169, pp. 708-759.
[82] Tsui, Y.-Y., Lin, S.-W., Cheng, T.-T., Wu, T.-C., 2009, "Flux-blending schemes for interface capture in two-fluid flows", International Journal of Heat and Mass Transfer, Vol. 52, pp. 5547-5556.
[83] Ubbink, O., Issa, R., 1999, "A method for capturing sharp fluid interfaces on arbitrary meshes", Journal of Computational Physics, Vol. 153, pp. 26-50.
[84] Unverdi, S.O., Tryggvason, G., 1992, "A front-tracking method for viscous, incompressible, multi-fluid flows", Journal of computational physics, Vol. 100, pp. 25-37.
[85] Williams, M., 1993, "The solution of the two-dimensional incompressible flow equations on unstructured triangular meshes", Numerical Heat Transfer, Vol. 23, pp. 309-325.
[86] Williams, M., Kothe, D., Puckett, E., Shyy, W., Narayan, R., 1999, Fluid Dynamics at Interface, in, Cambridge University Press, Cambridge.
[87] Xiao, F., Honma, Y., Kono, T., 2005, "A simple algebraic interface capturing scheme using hyperbolic tangent function", International Journal for Numerical Methods in Fluids, Vol. 48, pp. 1023-1040.
[88] Youngs, D.L., 1982, "Time-dependent multi-material flow with large fluid distortion", Numerical methods for fluid dynamics, Vol. 24, pp. 273-285.
[89] Youngs, D.L., 1984, "An interface tracking method for a 3D Eulerian hydrodynamics code", Atomic Weapons Research Establishment (AWRE) Technical Report, Vol. pp. 35.
[90] Zang, Y., Street, R.L., Koseff, J.R., 1994, "A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates", Journal of Computational Physics, Vol. 114, pp. 18-33.