簡易檢索 / 詳目顯示

研究生: 吳政勳
Wu, Zheng-Xun
論文名稱: 利用循環檢測相關性差值法以消除生醫訊號傳送過程下之干擾
Optical Interference Cancellations with Recursive Correlation Subtractions on Bio-Inspired Signals Transmission
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 66
中文關鍵詞: 光碼分多址頻譜幅度編碼身體局域網路平衡光檢測器遞歸干擾消除方式陣列波導光柵
外文關鍵詞: Optical code-division multiple-access (OCDMA), spectral-amplitude coding (SAC), body-Area Network (BAN), balanced photo-detector (BPD), recursive interference cancellations (RIC), arrayed waveguide grating (AWG)
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們採用光碼分多址(OCDMA)的頻譜幅度編碼(SAC)來存取身體局域網路(BAN)上的多個生物信號傳輸。 BAN的SAC-OCDMA方案使用來自人體的傳感器節點獲取的不同生理信號之間的正交碼序列來進行疊加編碼傳輸。每當一定數量的發射的生理生物信號在相同的頻譜帶下被導致在彼此附近操作時,在BAN中可能出現多址干擾(MAI)。因此,發展更強韌的機制用新的檢測器的以增強容量,複雜性降低和解碼性能是我們的目的。
    在本文中,我們提出了一種用於身體區域網絡的多階段OCDMA頻譜解碼的相關解碼和平衡光檢測器(BPD)減法的遞歸干擾消除(RIC)方案。所提出的方案提供逐級操作以抑制總接收機雜訊失真的變量。我們利用陣列波導光柵(AWG)循環屬性,通過遞歸配置簡化接收器設計。在數值分析中,RIC不僅逐步抑制接收機總雜訊失真,而且消除MAI。分析結果表明,所提出的RIC方案可以顯著提高系統BER。

    In this thesis, we adopt spectral-amplitude coding (SAC) of optical code-division multiple-access (OCDMA) to access multiple bio-signals transmission over Body-Area Network (BAN). The SAC-OCDMA scheme of BANs calls at superposition coding transmission using orthogonal code sequences between different physiological signals acquired by sensor nodes from the human body. Multiple-access interference (MAI) may arise in BANs whenever a certain number of transmitted physiological bio-signals led to operate near each other under the same spectrum band. Therefore, designing a robust mechanism of detector to enhance capacity, complexity reduction, and decoding performance is our purpose.
    In this thesis, we propose a recursive interference cancellations (RIC) scheme on correlation decoding and balanced photo-detector (BPD) subtractions over multi stages OCDMA spectral decoding for body area network. The proposed scheme provides gradual stage operation to suppress variable of related noise. We make use of arrayed waveguide grating (AWG) cyclic property to simplify the receiver design by recursive configuration. The RIC process gradually remove the corresponding signature signals on the respective correlation-subtraction round. Simultaneously, the RIC processes suppress the accumulated interference noise in the gradual correlation round. In numerical analysis, the RIC not only progressively suppress the transceiver related noise, but also eliminate MAI. Analytical results show that the proposed RIC scheme can offer significant improvement on overall system BER.

    中文摘要 I ABSTRACT II 致謝(Acknowledgment) III CONTENTS IV LIST OF TABLES V LIST OF FIGURES VI Chapter 1. Introduction 1 1.1 Body Area Network (BAN) 1 1.2. The Development of Optical CDMA Techniques 4 1.3. Research Motivation 7 1.4. Preview on the Thesis 9 Chapter 2. Principle of Correlation Detection Operation 10 2.1. Structure of Signatures Reconfiguration Scheme 10 2.1.1. Arrayed-waveguide grating and operating principle 10 2.1.2. Maximal-length sequence (M-sequence) codes 12 2.2. The Configuration of SAC-OCDMA System 13 2.2.1. The SAC-OCDMA system 14 2.2.2. AWG-based SAC-OCDMA system 16 2.3. Detection with AWG Correlation Scheme 19 2.4. Interference Cancellations Structure and Implementation 21 Chapter 3. Bio-Signals Transmission with Recursive Interference Cancellations 26 3.1. Structuring Signature Codecs for BAN 26 3.2. Decoding with Balanced Photo-Detection Scheme 29 3.3. Scenarios of Bio-Signals Transmission and Detection 31 3.4. Configuration of the RIC receiver 35 Chapter 4. Performance evaluations 41 4.1. Numerical example for the RIC Processes 41 4.2. Related noise limits 48 4.3. System performance of RIC Scheme 50 4.4. Simulation Results and Discussions 55 Chapter 5. Conclusions 60 REFERENCES 62

    [1] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith and A. Jamalipour, “Wireless Body Area Networks: A Survey,”in IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1658-1686, 2014.
    [2] B. Zhen, H.-bang Li, and R. Kohno, “Networking issues in medical implant communications,” International Journal of Multimedia and Ubiquitous Engineering, vol. 4, no. 1, pp. 23-28, Jan. 2009.
    [3] L. J. Akinbami, J. E. Moorman, and X. Liu, “Asthma prevalence, health care use, and mortality: United States, 2005-2009,”National health statistics reports, no. 32, pp. 1-14, Jan. 2011.
    [4] C. A. Otto, E. Jovanov, and A. Milenkovic, “A WBAN-based System for Health Monitoring at Home,” the 3rd IEEE/EMBS International Summer School and Symposium on Medical Devices and Biosensors, pp. 20-23, 2006.
    [5] S. Cherukuri, K. K. Venkatasubramanian and S. K. S. Gupta, “Biosec: a biometric based approach for securing communication in wireless networks of biosensors implanted in the human body,” International Conference on Parallel Processing Workshops, pp. 432-439, 2003.
    [6] Pervez Khan, Md.Asdaque Hussain, Kyung Sup Kwak, “Medical Applications of Wireless Body Area Networks,” International Journal of Digital Content Technology and its Applications, vol. 3, no. 3, pp. 185-193, Sep. 2009.
    [7] D. M. Barakah and M. Ammad-uddin, “A Survey of Challenges and Applications of Wireless Body Area Network (WBAN) and Role of a Virtual Doctor Server in Existing Architecture,” the third International Conference on Intelligent Systems Modelling and Simulation, pp. 214-219, 2012.
    [8] Mandeep Singh, Neelu Jain, “A Survey on Integrated Wireless Healthcare Framework for Continuous Physiological Monitoring,” International Journal of Computer Applications, vol. 86, no. 13, pp. 37-41, Jan. 2014.
    [9] K. Martinez, J.K. Hart, and R. Ong, “Environmental Sensor Networks,” IEEE Computer Society, pp. 534-545, 2004.
    [10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless Sensor Network for Habitat Monitoring,” ACM WSNA’02, Atlanta, Georgia, USA, pp. 11-21, Sept. 2002
    [11] E. Marom and O. G. Ramer, “Encoding-decoding optical fiber network,” in Electron Let., vol. 14, no. 3, pp. 48-49, Feb. 1978.
    [12] J. A. Salehi, “Code-division multiple-access techniques in optical fiber network--Part I: Fundamental principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, Aug. 1989.
    [13] J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, Aug. 1989.
    [14] H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” J. Lightave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
    [15] M. Kavehrad, and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, Mar. 1995.
    [16] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug. 1989.

    [17] D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 5, pp. 479-482, Apr. 1993.
    [18] X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, “Codes for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, pp. 728–729, Apr. 2000.
    [19] J. Luprano, J. Sola, S. Dasen, J. M. Koller, and O. Chelelat, “Combination of Body Sensor Networks and On-body Signal Processing Algorithms: the Practical Case of MyHeart Project,” in International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2006), pp. 4-79, 2006.
    [20] C. Goursaud, A. Julien-Vergonjanne, C. Aupetit-Berthelemot, J. P. Cances and J. M. Dumas, "DS-OCDMA receivers based on parallel interference cancellation and hard limiters," IEEE Transactions on Communications, vol. 54, no. 9, pp. 1663-1671, Sept. 2006.
    [21] Yao-Tang Chang, Jen-Fa Huang, Chuen-Ching Wang, Chih-Ta Yen, Hsu-Chih Cheng and Li-Wei Chou, “Adaptive Modified Time-spreading and Wavelength-group-hopping Embedded M-sequence code for Improved Confidentiality over Synchronous Networks,” Optical Engineering, vol. 50, no. 5, pp. 055001-055015, May 2011.
    [22] R. Lupas and S. Verdu. “Linear Multiuser Detectors for Synchronous Code-Division Multiple-Access Channels,” IEEE Trans. Information Theory, vol. 35, no. 1, pp. 123-136, Jan. 1989.
    [23] S. Verdu, “Optimum Multiuser Detectors for CDMA Systems,” IEEE Third International Symposium on ISSSTA '94, Oulu, Finland, pp. 173-185, July 1994.
    [24] R. Lupas and S. Verdu. “Near-Far Resistance of Multiuser Detectors in Asynchronous Channels,” IEEE Trans. Communications, vol. 38, no. 4, pp. 496-508, Apr 1990.

    [25] J. M. Holtzman, "DS/CDMA successive interference cancellation," IEEE Third International Symposium on ISSSTA '94, vol.1, pp. 69-78, July 1994.
    [26] Z. Wang, J. Chang, and P.R. Prucnal, “Theoretical Analysis and Experimental Investigation on the Confidentiality of 2-D Incoherent Optical CDMA System,” IEEE J. Lightwave Technol., vol. 28, no. 12, pp. 1761-1769, June. 2010.
    [27] T. Eltaif, H. M. H. Shalaby, and S. Shaari, “A novel successive interference cancellation scheme in OCDMA system,” Proc. IEEE Conf. ICSE2006, pp. 299–303, 2006.
    [28] P. Patel and J. Holtzman, “Analysis of a Simple Successive Interference Cancellation Scheme in a DS/CDMA System,” IEEE Journal on selected areas in Commun., vol. 12, no. 5, pp. 796-807, Jun. 1994.
    [29] P. Patel and I. Holtzman, “Analysis of a simple successive interference cancellation scheme in DS/CDMA system using correlations,” Global Telecommunications Conference, vol. 1, pp.76-80, 1993.
    [30] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Transactions on Communications, vol. 46, pp. 1176-1185, Sept. 1998.
    [31] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber bragg grating based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol. 19, no. 9, pp. 1274-1281, Sept. 2001.
    [32] T. Demeechai, “Noise-limited performance of spectral-amplitude-coding optical CDMA in fibre-optic radio highway networks,” IEE Proc. Optoelectronics, vol. 152, no. 5, pp. 269-273, Oct. 2005.
    [33] W. Huang and M. Nakagawa, “Nonlinear effect of direct-sequence CDMA in optical transmission,” IEICE Trans. Commun., vol. 2, no. 5, pp.702–708, May 1995.
    [34] J.F. Huang, C.T. Yen, and T.Y. Li, “Nonlinearity effect of electro-optical modulator response in double spread CDMA radio-over-fiber transmissions,” Optical Fiber Technology, vol. 14, no. 3, pp. 247–258, Feb. 2008.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE