簡易檢索 / 詳目顯示

研究生: 林瑤臻
Lin, Yao-Chen
論文名稱: 高脂飲食誘導青少年小鼠憂鬱症的性別差異
Sex differences in high-fat diet-induced depression in adolescent mice
指導教授: 郭余民
Kuo, Yu-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 60
中文關鍵詞: 憂鬱症高脂飲食青少年性別差異自主神經失衡
外文關鍵詞: depression, high-fat diet, adolescents, sex differences, autonomic imbalance
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 憂鬱症是造成人類失能的主要原因之一。過去的研究發現,肥胖與代謝異常會增加罹患憂鬱症的風險,使其病症更為嚴重、持久,而且會降低抗憂鬱藥物的療效。在青少年階段,由於大腦還尚未發育完整,攝取過多的高脂飲食會使得大腦的結構和功能發生改變,加劇他們在這個年紀時行為決策和認知上的缺陷。憂鬱症的發病率有性別差異,通常女性罹患憂鬱症的比例是男性的1.5到2倍,但是導致性別差異的具體原因仍不明確。過去有關憂鬱症的動物研究,大多是以公鼠為研究模型,忽略了性別的因素。據此,本研究的目的是要探討青少年小鼠,長期攝食高脂飼料(high-fat diet, HFD) 後,是否會誘導出類似憂鬱症狀的行為,並且是否存在性別差異。我的研究結果顯示,離乳後的小鼠 (3周齡) 餵食HFD 8週後會誘導其表現出類憂鬱的行為,並且公鼠的憂鬱程度高於母鼠。檢視體重時,發現公鼠體重變化明顯高於母鼠。過去的研究表明,憂鬱症經常會伴隨著全身性的輕微發炎;而在大腦內,憂鬱症患者的內側前額葉皮質 (medial prefrontal cortex) 也常會出現發炎現象。然而,公、母鼠餵食8週HFD後,都沒有發現內側前額葉皮質有發炎的現象。另有研究指出,憂鬱症患者常有自主神經失衡的現象,也就是交感神經活性上升,而副交感神經活性下降。我以心率變異性 (heart rate variability) 測量餵食8週HFD的小鼠發現,公鼠的副交感神經活性下降,但在母鼠未見此結果。已知下視丘室旁核 (hypothalamic paraventricular nucleus) 內之催產素神經元對於調節自主神經和情緒障礙至關重要,所以我也針對此區的催產素神經元進行分析。結果表明,8週HFD並不會改變下視丘室旁核中的催產素神經元的數量或是其活性,而且未影響血漿中的催產素濃度。同時,下視丘室旁核中亦無發炎現象。總結我的研究,長期攝食HFD的青少年公鼠會表現出類憂鬱的行為,而母鼠則不明顯。此現象可能與公鼠攝食HFD後體重的增加明顯高於母鼠,以及副交感神經活性下降有關,但是具體原因仍需進一步探討。

    Depression is one of the leading causes of disability globally. It has been shown that obesity and metabolic disorders not only elevate the risk and severity of depression but also reduce the effectiveness of antidepressant treatments. During adolescence, when the brain is still developing, excessive high-fat diet (HFD) consumption can cause structural and functional changes in the brain, worsening cognitive and decision-making deficits during this stage. Depression is known to exhibit differences between sexes, with women being 1.5 to 2 times more susceptible than men, although the exact mechanism remains unclear. Historically, animal studies on depression have predominantly used male animals, largely neglecting sex-specific factors. Thus, this study aimed to explore whether chronic HFD consumption induces depressive-like behavior in adolescent mice and whether such effects differ by sex. The results showed that feeding mice with HFD immediately after weaning (3 weeks old) for 8 weeks induced depression-like behavior, which was primarily observed in male mice but not female mice. Interestingly, male mice exhibited greater weight gain than females. Although depression is frequently linked to mild inflammation both systemically and in the medial prefrontal cortex, I did not find evidence of microglial activation in the medial prefrontal cortex of either male or female mice after the HFD regimen. Moreover, depression has been linked to autonomic imbalance, characterized by increased sympathetic activity and decreased parasympathetic activity. Through analysis of heart rate variability, I found that 8-week HFD reduced parasympathetic activity in male mice, but not in female mice. It is known that oxytocin neurons within the hypothalamic paraventricular nucleus (PVN) play a crucial role in regulating the autonomic nervous system and emotional disorders. Therefore, I also examined the expression of oxytocin neurons in this region. The results showed that neither the number nor activity of oxytocin neurons in the PVN, nor the levels of oxytocin in the plasma, were altered in the HFD mice. Additionally, there was no evidence of microglial activation in the PVN of these mice. In conclusion, long-term HFD consumption induced depression-like behaviors in adolescent male mice, with a less pronounced effect in female mice. This sex difference may be due to the greater increase in body weight and the decrease in parasympathetic nervous system activity in male mice compared to female mice after consuming the HFD. However, further research is needed to clarify the underlying mechanisms.

    中文摘要 i Abstract iii 致謝 v Contents vi Figure contents viii Abbreviations ix Introduction 1 DEPRESSION 1 COMORBIDITY METABOLIC DISORDER AND DEPRESSION 1 METABOLIC DISORDERS IN ADOLESCENCE AFFECT DEPRESSION 2 SEX DIFFERENCES AND DEPRESSION 3 INFLAMMATION AND DEPRESSION 4 AUTONOMIC IMBALANCE IN DEPRESSION 5 Objective, Specific Aims, and Experimental Designs 8 Material and Methods 9 1. ANIMALS 9 2. HIGH-FAT DIET FEEDING TREATMENT 9 3. SUCROSE PREFERENCE TEST 9 4. FORCED SWIMMING TEST 10 5. MEASUREMENT OF AUTONOMIC NERVOUS SYSTEM ACTIVITY 10 6. WATER IMMERSION-RESTRAINT STRESS 11 7. BRAIN PREPARATION 11 8. IMMUNOHISTOCHEMISTRY 12 9. IMMUNOSTAINING QUANTIFIED ANALYSIS 13 10. MEASUREMENT OF OXYTOCIN CONCENTRATION IN PLASMA 13 11. STATISTICAL ANALYSIS 14 Results 15 1. Eight weeks of HFD feeding led to depression-like behaviors in both male and female mice. 15 2. Eight weeks of HFD feeding did not lead to microglial activation in the mPFC of mice. 16 3. Eight weeks of HFD feeding led to autonomic imbalance in male mice. 17 4. Eight weeks of HFD feeding did not change the number of oxytocin neurons and stress-response oxytocin activity in the PVN. 18 5. Eight weeks of HFD feeding did not lead to microglial activation in the PVN of mice. 19 Discussion 20 Conclusion 27 References 28 Tables 35 Figures 36

    1 Pearce, M. et al. Association Between Physical Activity and Risk of Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry 79, 550-559 (2022). https://doi.org/10.1001/jamapsychiatry.2022.0609
    2 Fernández-Alvarez, J. et al. Efficacy of bio- and neurofeedback for depression: a meta-analysis. Psychol Med 52, 201-216 (2022). https://doi.org/10.1017/s0033291721004396
    3 (WHO), W. H. O. Depressive disorder (depression), <https://www.who.int/news-room/fact-sheets/detail/depression> (2023).
    4 Arnaud, A. M. et al. Impact of Major Depressive Disorder on Comorbidities: A Systematic Literature Review. J Clin Psychiatry 83 (2022). https://doi.org/10.4088/JCP.21r14328
    5 Tsai, S. F. et al. High-fat diet induces depression-like phenotype via astrocyte-mediated hyperactivation of ventral hippocampal glutamatergic afferents to the nucleus accumbens. Mol Psychiatry 27, 4372-4384 (2022). https://doi.org/10.1038/s41380-022-01787-1
    6 Mansur, R. B., Brietzke, E. & McIntyre, R. S. Is there a “metabolic-mood syndrome”? A review of the relationship between obesity and mood disorders. Neurosci Biobehav Rev 52, 89-104 (2015). https://doi.org/https://doi.org/10.1016/j.neubiorev.2014.12.017
    7 (WHO), W. H. O. Obesity and overweight, <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight> (1 March 2024).
    8 Yu, H., Yu, B., Qin, X. & Shan, W. A unique inflammation-related mechanism by which high-fat diets induce depression-like behaviors in mice. J. Affect. Disord. 339, 180-193 (2023). https://doi.org/https://doi.org/10.1016/j.jad.2023.07.005
    9 Reichelt, A. C. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits. Front Behav Neurosci 10 (2016). https://doi.org/10.3389/fnbeh.2016.00189
    10 Lloyd, K. R. & Reyes, T. M. Treading water: mixed effects of high fat diet on mouse behavior in the forced swim test. Physiol. Behav. 223, 112965 (2020). https://doi.org/https://doi.org/10.1016/j.physbeh.2020.112965
    11 Yao, X. et al. High-fat diet consumption promotes adolescent neurobehavioral abnormalities and hippocampal structural alterations via microglial overactivation accompanied by an elevated serum free fatty acid concentration. Brain Behav. Immun. 119, 236-250 (2024). https://doi.org/https://doi.org/10.1016/j.bbi.2024.04.005
    12 Labouesse, M. A. et al. Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency. Mol Psychiatry 22, 961-971 (2017). https://doi.org/10.1038/mp.2016.193
    13 Wang, C. et al. High-Fat Diet Consumption Induces Neurobehavioral Abnormalities and Neuronal Morphological Alterations Accompanied by Excessive Microglial Activation in the Medial Prefrontal Cortex in Adolescent Mice. Int J Mol Sci 24 (2023). https://doi.org/10.3390/ijms24119394
    14 Yang, C. et al. Effects of Prolonged High-Fat Diet Consumption Starting at Different Ages on Behavioral Parameters and Hippocampal Neuroplasticity in Male Mice. JIN 22 (2023). https://doi.org/10.31083/j.jin2201016
    15 Bangasser, D. A. & Cuarenta, A. Sex differences in anxiety and depression: circuits and mechanisms. Nat. Rev. Neurosci. 22, 674-684 (2021). https://doi.org/10.1038/s41583-021-00513-0
    16 Tobaldini, E. et al. Depression and cardiovascular autonomic control: a matter of vagus and sex paradox. Neurosci Biobehav Rev 116, 154-161 (2020). https://doi.org/https://doi.org/10.1016/j.neubiorev.2020.06.029
    17 Pitzer, C., Kurpiers, B. & Eltokhi, A. Sex Differences in Depression-Like Behaviors in Adult Mice Depend on Endophenotype and Strain. Front Behav Neurosci 16, 838122 (2022). https://doi.org/10.3389/fnbeh.2022.838122
    18 Eltokhi, A., Kurpiers, B. & Pitzer, C. Baseline Depression-Like Behaviors in Wild-Type Adolescent Mice Are Strain and Age but Not Sex Dependent. Front Behav Neurosci 15, 759574 (2021). https://doi.org/10.3389/fnbeh.2021.759574
    19 Winberg, J., Rentz, J., Sugamori, K., Swardfager, W. & Mitchell, J. Sex Differences in Metabolic and Behavioral Responses to Exercise but Not Exogenous Osteocalcin Treatment in Mice Fed a High Fat Diet. Front Physiol 13, 831056 (2022). https://doi.org/10.3389/fphys.2022.831056
    20 Wang, W. et al. Effects of High-fat Diet and Chronic Mild Stress on Depression-like Behaviors and Levels of Inflammatory Cytokines in the Hippocampus and Prefrontal Cortex of Rats. Neuroscience 480, 178-193 (2022). https://doi.org/https://doi.org/10.1016/j.neuroscience.2021.11.015
    21 Geng, S. et al. Gut Microbiota Are Associated With Psychological Stress-Induced Defections in Intestinal and Blood-Brain Barriers. Front Microbiol 10, 3067 (2019). https://doi.org/10.3389/fmicb.2019.03067
    22 Gao, L. N. et al. Puerarin Alleviates Depression-Like Behavior Induced by High-Fat Diet Combined With Chronic Unpredictable Mild Stress via Repairing TLR4-Induced Inflammatory Damages and Phospholipid Metabolism Disorders. Front Pharmacol 12, 767333 (2021). https://doi.org/10.3389/fphar.2021.767333
    23 Tan, C., Yan, Q., Ma, Y., Fang, J. & Yang, Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 13, 1015175 (2022). https://doi.org/10.3389/fneur.2022.1015175
    24 Zhuang, H. et al. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav. Immun. 100, 155-171 (2022). https://doi.org/https://doi.org/10.1016/j.bbi.2021.11.018
    25 Jiang, J. et al. Intertwined associations between oxytocin, immune system and major depressive disorder. Biomed Pharmacother 163, 114852 (2023). https://doi.org/10.1016/j.biopha.2023.114852
    26 Yang, Y., Zhong, Z., Wang, B. & Wang, Y. Xiaoyao San ameliorates high-fat diet-induced anxiety and depression via regulating gut microbiota in mice. Biomed. Pharmacother. 156, 113902 (2022). https://doi.org/https://doi.org/10.1016/j.biopha.2022.113902
    27 Agorastos, A. et al. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines 11 (2023). https://doi.org/10.3390/biomedicines11061591
    28 Licht, C. M. M., de Geus, E. J. C. & Penninx, B. W. J. H. Dysregulation of the Autonomic Nervous System Predicts the Development of the Metabolic Syndrome. J. Clin. Endocrinol 98, 2484-2493 (2013). https://doi.org/10.1210/jc.2012-3104
    29 Singla, S., Jhamb, S., Singh, K. D. & Kumar, A. Depression affects autonomic system of the body? Yes, it does! J Educ Health Promot 9, 217 (2020). https://doi.org/10.4103/jehp.jehp_627_19
    30 Vancheri, F., Longo, G., Vancheri, E. & Henein, M. Y. Mental Stress and Cardiovascular Health-Part I. J Clin Med 11 (2022). https://doi.org/10.3390/jcm11123353
    31 Pyner, S. in Handb Clin Neurol Vol. 182 (eds Dick F. Swaab et al.) 355-367 (Elsevier, 2021).
    32 Badoer, E. Proceedings of the Australian Physiological and Pharmacological Society Symposium: The Hypothalamus HYPOTHALAMIC PARAVENTRICULAR NUCLEUS AND CARDIOVASCULAR REGULATION. Clin. Exp. Pharmacol. Physiol. 28, 95-99 (2001). https://doi.org/https://doi.org/10.1046/j.1440-1681.2001.03413.x
    33 Tsai, S. F. & Kuo, Y. M. The Role of Central Oxytocin in Autonomic Regulation. J Physiol Investig 67, 3-14 (2024). https://doi.org/10.4103/ejpi.Ejpi-d-23-00037
    34 Savić, B., Murphy, D. & Japundžić-Žigon, N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 13, 858941 (2022). https://doi.org/10.3389/fphys.2022.858941
    35 Ménard, C., Pfau, M. L., Hodes, G. E. & Russo, S. J. Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience. Neuropsychopharmacology 42, 62-80 (2017). https://doi.org/10.1038/npp.2016.90
    36 Chobanyan-Jürgens, K. & Jordan, J. Autonomic nervous system activity and inflammation: good ideas, good treatments, or both? Am J Physiol Heart Circ Physiol 309, H1999-2001 (2015). https://doi.org/10.1152/ajpheart.00826.2015
    37 Ferguson, A. V., Latchford, K. J. & Samson, W. K. The paraventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets 12, 717-727 (2008). https://doi.org/10.1517/14728222.12.6.717
    38 Won, E. & Kim, Y. K. Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression. Curr Neuropharmacol 14, 665-673 (2016). https://doi.org/10.2174/1570159x14666151208113006
    39 Lewis, E. M. et al. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron 108, 659-675.e656 (2020). https://doi.org/10.1016/j.neuron.2020.10.002
    40 Slattery, D. A. & Neumann, I. D. Oxytocin and Major Depressive Disorder: Experimental and Clinical Evidence for Links to Aetiology and Possible Treatment. Pharmaceuticals 3, 702-724 (2010). https://doi.org/10.3390/ph3030702
    41 Nisbett, K. E. et al. Sex and hormonal status influence the anxiolytic-like effect of oxytocin in mice. Neurobiol Stress 26, 100567 (2023). https://doi.org/10.1016/j.ynstr.2023.100567
    42 Liu, Q. et al. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J Psychiatr Res. 126, 134-140 (2020). https://doi.org/https://doi.org/10.1016/j.jpsychires.2019.08.002
    43 Liu, M.-Y. et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. Protoc. 13, 1686-1698 (2018). https://doi.org/10.1038/s41596-018-0011-z
    44 Yankelevitch-Yahav, R., Franko, M., Huly, A. & Doron, R. The forced swim test as a model of depressive-like behavior. J Vis Exp (2015). https://doi.org/10.3791/52587
    45 Speerschneider, T. & Thomsen, M. B. Physiology and analysis of the electrocardiographic T wave in mice. Acta Physiol (Oxf) 209, 262-271 (2013). https://doi.org/10.1111/apha.12172
    46 Kober, F., Iltis, I., Cozzone, P. J. & Bernard, M. Cine-MRI assessment of cardiac function in mice anesthetized with ketamine/xylazine and isoflurane. MAGMA 17, 157-161 (2004). https://doi.org/10.1007/s10334-004-0086-0
    47 Thireau, J., Zhang, B. L., Poisson, D. & Babuty, D. Heart rate variability in mice: a theoretical and practical guide. Exp. Physiol. 93, 83-94 (2008). https://doi.org/https://doi.org/10.1113/expphysiol.2007.040733
    48 Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-aho, P. O. & Karjalainen, P. A. Kubios HRV – Heart rate variability analysis software. Comput Methods Programs Biomed. 113, 210-220 (2014). https://doi.org/https://doi.org/10.1016/j.cmpb.2013.07.024
    49 Aschar-Sobbi, R. et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat Commun 6, 6018 (2015). https://doi.org/10.1038/ncomms7018
    50 Tzeng, W. Y. et al. Sex Differences in Stress and Group Housing Effects on the Number of Newly Proliferated Cells and Neuroblasts in Middle-Aged Dentate Gyrus. Front Behav Neurosci 10, 249 (2016). https://doi.org/10.3389/fnbeh.2016.00249
    51 Hsu, Y.-C. et al. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses. Stress 19, 125-132 (2016). https://doi.org/10.3109/10253890.2015.1108305
    52 Johnson, A. W. Dietary manipulations influence sucrose acceptance in diet induced obese mice. Appetite 58, 215-221 (2012). https://doi.org/https://doi.org/10.1016/j.appet.2011.09.015
    53 Lainez, N. M. et al. Diet-Induced Obesity Elicits Macrophage Infiltration and Reduction in Spine Density in the Hypothalami of Male but Not Female Mice. Front Immunol 9, 1992 (2018). https://doi.org/10.3389/fimmu.2018.01992
    54 Pettersson, U. S., Waldén, T. B., Carlsson, P. O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS One 7, e46057 (2012). https://doi.org/10.1371/journal.pone.0046057
    55 Hwang, L. L. et al. Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity (Silver Spring) 18, 463-469 (2010). https://doi.org/10.1038/oby.2009.273
    56 Rincón-Cortés, M. & Grace, A. A. Sex-Dependent Effects of Stress on Immobility Behavior and VTA Dopamine Neuron Activity: Modulation by Ketamine. Int J Neuropsychopharmacol 20, 823-832 (2017). https://doi.org/10.1093/ijnp/pyx048
    57 Dalla, C. et al. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol. Behav. 93, 595-605 (2008). https://doi.org/https://doi.org/10.1016/j.physbeh.2007.10.020
    58 Kokras, N. et al. Forced swim test: What about females? Neuropharmacology 99, 408-421 (2015). https://doi.org/https://doi.org/10.1016/j.neuropharm.2015.03.016
    59 Li, N., Xu, Y., Chen, X., Duan, Q. & Zhao, M. Sex-specific diurnal immobility induced by forced swim test in wild type and clock gene deficient mice. Int J Mol Sci 16, 6831-6841 (2015). https://doi.org/10.3390/ijms16046831
    60 Boivin, J. R., Piekarski, D. J., Wahlberg, J. K. & Wilbrecht, L. Age, sex, and gonadal hormones differently influence anxiety- and depression-related behavior during puberty in mice. Psychoneuroendocrinology 85, 78-87 (2017). https://doi.org/10.1016/j.psyneuen.2017.08.009
    61 Silva, A. L., Fry, W. H., Sweeney, C. & Trainor, B. C. Effects of photoperiod and experience on aggressive behavior in female California mice. Behav Brain Res 208, 528-534 (2010). https://doi.org/10.1016/j.bbr.2009.12.038
    62 Mittli, D. Inflammatory processes in the prefrontal cortex induced by systemic immune challenge: Focusing on neurons. Brain Behav Immun Health 34, 100703 (2023). https://doi.org/10.1016/j.bbih.2023.100703
    63 Liang, Y. et al. Dietary and metabolic risk of neuropsychiatric disorders: insights from animal models. Br. J. Nutr. 126, 1771-1787 (2021). https://doi.org/10.1017/S0007114521000659
    64 Gullett, N., Zajkowska, Z., Walsh, A., Harper, R. & Mondelli, V. Heart rate variability (HRV) as a way to understand associations between the autonomic nervous system (ANS) and affective states: A critical review of the literature. Int J Psychophysiol 192, 35-42 (2023). https://doi.org/https://doi.org/10.1016/j.ijpsycho.2023.08.001
    65 Iseger, T. A., van Bueren, N. E. R., Kenemans, J. L., Gevirtz, R. & Arns, M. A frontal-vagal network theory for Major Depressive Disorder: Implications for optimizing neuromodulation techniques. Brain Stimul 13, 1-9 (2020). https://doi.org/https://doi.org/10.1016/j.brs.2019.10.006
    66 Grippo, A. J. et al. Increased susceptibility to ventricular arrhythmias in a rodent model of experimental depression. Am J Physiol Heart Circ Physiol 286, H619-626 (2004). https://doi.org/10.1152/ajpheart.00450.2003
    67 Lawson, E. A., Olszewski, P. K., Weller, A. & Blevins, J. E. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J Neuroendocrinol 32, e12805 (2020). https://doi.org/10.1111/jne.12805
    68 Gajdosechova, L. et al. Hypooxytocinaemia in obese Zucker rats relates to oxytocin degradation in liver and adipose tissue. J. Endocrinol. 220, 333-343 (2014). https://doi.org/10.1530/JOE-13-0417
    69 Marazziti, D. et al. Sex-Related Differences in Plasma Oxytocin Levels in Humans. Clin Pract Epidemiol Ment Health 15, 58-63 (2019). https://doi.org/10.2174/1745017901915010058
    70 Ishunina, T. A. & Swaab, D. F. Vasopressin and Oxytocin Neurons of the Human Supraoptic and Paraventricular Nucleus; Size Changes in Relation to Age and Sex. J. Clin. Endocrinol. Metab. 84, 4637-4644 (1999). https://doi.org/10.1210/jcem.84.12.6187
    71 Borrow, A. P. & Cameron, N. M. The role of oxytocin in mating and pregnancy. Horm Behav 61, 266-276 (2012). https://doi.org/https://doi.org/10.1016/j.yhbeh.2011.11.001
    72 Gnanadesikan, G. E., Hammock, E. A. D., Tecot, S. R., Carter, C. S. & MacLean, E. L. Specificity of plasma oxytocin immunoassays: A comparison of commercial assays and sample preparation techniques using oxytocin knockout and wildtype mice. Psychoneuroendocrinology 132, 105368 (2021). https://doi.org/https://doi.org/10.1016/j.psyneuen.2021.105368
    73 Winkler, Z. et al. Impaired microglia fractalkine signaling affects stress reaction and coping style in mice. Behav. Brain Res. 334, 119-128 (2017). https://doi.org/https://doi.org/10.1016/j.bbr.2017.07.023
    74 Kopp, B. L., Wick, D. & Herman, J. P. Differential effects of homotypic vs. heterotypic chronic stress regimens on microglial activation in the prefrontal cortex. Physiol. Behav. 122, 246-252 (2013). https://doi.org/https://doi.org/10.1016/j.physbeh.2013.05.030

    無法下載圖示 校內:2026-08-31公開
    校外:2026-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE