簡易檢索 / 詳目顯示

研究生: 王竣弘
Wang, Jyun-Hong
論文名稱: 交流電動力操控下的環狀指叉型電極晶片應用於生物粒子濃縮之研究
Study on a Ring-shaped Interdigitated Electrode Controlled by AC Electrokinetic for Concentrating Bio-particles
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 53
中文關鍵詞: 微濃縮器細菌交流電滲流介電泳力
外文關鍵詞: micro-concentrator, bacteria, AC electroosmotic flow, dielectrophoretic force
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般而言,醫院對於檢驗細菌所需時間都有過久以及檢測繁複的問題,因此在本研究結合微機電製程技術,將檢驗平台微小化與檢測時間縮短,設計以電動力學為基礎之微濃縮器平台,利用微奈米科技與電動力學結合應用在醫學檢驗,能在十分鐘內達到濃縮之效果。
    本研究以電動力學為主來設計環狀指叉型電極平台,藉由交流電之非均勻電場產生介電泳力與交流電滲流力結合,操控溶液中的粒子使之傳輸並聚集,並應用於生物粒子如細菌即時濃縮之研究。當細菌溶液(~ 100L)滴至微濃縮平台上,施加交流訊號(120 Vpp, 1 kHz)於晶片上,使溶液受到電動力學作用產生交流電滲流與介電泳力,使溶液中的細菌受到流體帶動往電極中心傳輸與聚集,無須外加微注射器產生連續流動並濃縮的效果。於研究中使用Vibrio、Escherichia coli以及Staphylococcus aureu為例,施加理想交流電壓與頻率,細菌受到交流電滲流與介電泳力相互作用,使溶液中的細菌產生傳輸與濃縮現象。約十分鐘可分辨出不同濃度的細菌(106~ 104 CFU/mL)。依此功能,未來將有可能應用到菌尿症等相對低濃度細菌的快速檢驗上。

    In general, there are some problems of detection in hospital such as time consuming and complicated detection. In this research, a micro-concentrator platform for medical combined micro electro mechanical systems (MEMS) and electrokinetic is designed, then the sample in solution can be concentrated in few minutes.
    In this study, an electrokinetic-based ring interdigitated electrode platform was designed. Combined dielectrophoresis (DEP) generated by non-uniform electric field and AC electroosmotic flow (ACEO) to manipulate particles in the solution to transmit and concentrated, and applied to biological particles such as bacteria immediately concentrated.
    When the bacteria solution (~100 L) was dropped to micro-concentrator platform and AC signal (120 Vpp, 1 kHz) is applied to the device, the bacteria in the solution were transmitted and concentrated by AC electroosmotic flow (ACEO) and dielectrophoresis (DEP) without external micro-syringe. In this study, Vibrio, Escherichia coli and Staphylococcus aureu were used for transmission and concentration by interaction of ACEO and DEP applied appropriate AC signal and frequency. In ten minutes, the different concentrations of bacteria (106 ~ 104 CFU/mL) could be distinguished. In the future, the platform may be applied to the low concentration detection, such as rapid test on urinary tract infection, etc.

    Abstract I 中文摘要 II 誌謝 III Contents IV List of Figures VI Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Traditional methods 2 1.2.1 Turbidimeter 2 1.2.2 Plate count 3 1.2.3 Flow Cytometry 3 1.2.4 Micro-electro-mechanical System Technology 4 1.3 Electrokinetics 5 1.3.1 Electric double layer (EDL) 5 1.3.2 Electroosmosis (EO) 8 1.3.3 AC Electroosmosis (ACEO) 9 1.3.4 Dielectrophoresis (DEP) 11 1.4 Literature Review 13 1.5 Research Configuration 15 Chapter 2 Materials and Methods 17 2.1 Principle of Ring-shaped Interdigitated Electrode Chip (RIDE) 17 2.2 Chip Design and Micro-Fabrication 21 2.3 Sample Preparation 23 2.4 System Configuration 24 Chapter 3 Results and Discussion 26 3.1. Frequency-dependent ACEO and DEP on RIDE 26 3.2 The impact of the voltage on the concentration of particles 28 3.3 High frequency (pDEP dominant) for particle pre-concentration 33 3.4 The impact of the conductivity of buffer on RIDE 35 3.5 Longer ring-shaped Interdigitated Electrode (R: 3 mm) for concentrations of bacteria 36 Chapter 4 Conclusion 49 Chapter 5 Prospect 50 References 51

    [1]T. M. Squires, (2009). "Induced-charge electrokinetics: fundamental challenges and opportunities." Lab on a Chip, 9, 2477-2483.
    [2]B. S. B. Georgette, G. Simone, A. Arora, A. Philippi, and A. Manz, (2010). "Latest developments in microfluidic cell biology and analysis systems." Analytical Chemistry, 82, 484-4864.
    [3]P. K. Wong, C. Y. Chen, T. H. Wang, and C. M. Ho, (2004). "Electrokinetic bioprocessor for concentrating cells and molecules." Analytical Chemistry, 76, 6908-6914.
    [4]DENSICHEK (VITEK), BIOMEREUX, Inc., USA
    [5]D. Huh, WeiGu, Y. Kamotani, J. B. Grotberg, and S. Takayama, (2005). "Microfluidics for flow cytometric analysis of cells and particles." Physiological Measurement, 26 (3), R73-R98.
    [6]R. Bernini, E. De Nuccio, F. Brescia, A. Minardo, L. Zeni, P. M. Sarro, R. Palumbo, M. R. Scarfi, (2006). "Development and characterization of an integrated silicon micro flow cytometer." Analytical and Bioanalytical Chemistry, 386, 1267-1272.
    [7]K. I. Inatomi, S. I. Izuo, and S. S. Lee, (2006). "Application of a microfluidic device for counting of bacteria." Letters in Applied Microbiology, 43, 296-300.
    [8]C. Sakamoto, N. Yamaguchi, M. Yamada, H. Nagase, M. Seki, and M. Nasu, (2007). "Rapid quantification of bacterial cells in potable water using a simplified microfluidic device." Journal of Microbiological Methods, 68, 643-647.
    [9]R. Scott, P. Sethu, and C. K. Harnett, (2008). "Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter." Review of Scientific Instruments, 79, 046104.
    [10]H. T. Chen and Y. N. Wang, (2009). "Optical microflow cytometer for particle counting, sizing and fluorescence detection." Microfluidics and Nanofluidics, 6, 529-537.
    [11]J. H. Nieuwenhuis, F. Kohl, J. Bastemeijer, P. M. Sarro, and M. J. Vellekoop, (2004). "Integrated Coulter counter based on 2-dimensional liquid aperture control." Sensors and Actuators B-Chemical, 102, 44-50.
    [12]K. Cheung, S. Gawad, and P. Renaud, (2005). "Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation." Cytometry Part A, 65A, 124-132.
    [13]C. Simonnet and A. Groisman, (2006). "High-throughput and high-resolution flow cytometry in molded microfluidic devices." Analytical Chemistry, 78, 5653-5663.
    [14]R. Rodriguez-Trujillo, C. A. Mills, J. Samitier, and G. Gomila, (2007). "Low cost micro-Coulter counters with hydrodynamic focusing." Microfluidics and Nanofluidics, 3, 171-176.
    [15]R. F. Probstein ed., (1994). "Physicochemical hydrodynamics: an introduction." 2nd ed., Wiley-Interscience. p.195.
    [16]H. C. Chang and L. Y. Yeo ed., (2010). "Electrokinetically driven microfluidics and nanofluidics." 1st ed. Cambridge University Press.
    [17]J. H. Masliyah and S. Bhattacharjee ed., (2006). "Electrokinetic and colloid transport phenomena."Wiley-Interscience p. 222.
    [18]Z. Gagnon, J. Mazur, and H. C. Chang, (2010). "Integrated AC electrokinetic cell separation in a closed-loop device." Lab on a Chip, 10, 718-726.
    [19]A. R. Minerick, A. E. Ostafin, and H. C. Chang, (2002). "Electrokinetic transport of red blood cells in microcapillaries." Electrophoresis, 23, 2165-2173.
    [20]N. G. Green, A. Ramos, A. Gonza´lez, H. Morgan, and A. Castellanos, (2000). "Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements." Physical Review E, 61, 4011-4018.
    [21]H. Morgan and N. G. Green ed., (2003). "AC Electrokinetics: colloids and nanoparticles." (1st ed.). Williston, VT USA: Research Studies Press LTD.
    [22]H. A. Pohl, (1951). "The motion and precipitation of suspensoids in divergent electric fields." Journal of Applied Physics, 22 (7), 869-871
    [23]H. A. Pohl ed., (1978). "Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields." 1st ed., Cambridge University Press.
    [24]I. F. Cheng, H. C. Chang, D. Hou, and H. C. Chang, (2007). "An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting." Bionmicrofluidics, 1, 021503.
    [25]E. M. Melvin, B. R. Moore, and K. H. Gilchrist, (2011). "On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes." Biomicrofluidics, 5, 034113.
    [26]H. Hwang and J. K. Park, (2008). "Rapid and selective concentration of microparticles in an optoelectrofluidic platform." Lab on a Chip, 9, 199–206.
    [27]M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, (2009). "Active Manipulation of Quantum Dots using AC Electrokinetics." Journal of Physical Chemistry C, 113, 6561–6565.
    [28]J. P. Urbanski, T. Thorsen, J. A. Levitan, and M. Z. Bazant, (2006). "Fast ac electro-osmotic micropumps with nonplanar electrodes." Applied Physics Letters, 89, 143508.
    [29]K. F. Hoettges, M. B. McDonnell, and M. P. Hughes, (2003). "Use of combined dielectrophoretic/electrohydrodynamic forces for biosensor enhancement." Journal of Physics D-Applied Physics, 36(20), L101-L104.

    無法下載圖示 校內:2018-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE