| 研究生: |
傅瑋誠 Fu, Wei-cheng |
|---|---|
| 論文名稱: |
在離子液體中電化學製備多孔性聚(3,4-二氧乙基噻吩)電極應用於超級電容器 Electrochemical preparation of porous poly (3,4-ethylenedioxythiophene) electrodes from room temperature ionic liquids for supercapacitors |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 超級電容器 、離子液體 、導電高分子 、聚(3,4-二氧乙基噻吩) |
| 外文關鍵詞: | Supercapacitor, ionic liquid, conducting polymer, PEDOT |
| 相關次數: | 點閱:100 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究探討在不同離子液體和有機溶液中電聚合導電高分子poly(3,4-ethylenedioxthioiphene)(PEDOT)製備成超級電容器的電極,並使用離子液體1-ethyl-3-methylimidazolium tetrafluoroborate ([EMI][BF4])和0.1M KClO4水溶液作為兩種不同電容電解液,對PEDOT電極進行電容的效能檢測,此外也會對不同電解液中製備的PEDOT電極進行性質的分析,由上述檢測和分析來探討電解液對PEDOT電極在超級電容應用上的影響。
論文中使用四種不同電解液來製備PEDOT電極分別為三種不同陰陽離子搭配的離子液體1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMI][TFSI])、1-butyl-3-methylimidazolium tetrafluoroborate ([BMI][BF4])、1-allyl-3-(2-methoxyethyl)-imidazolium bis(trifluoromethylsulfonyl)imide ([AMO][TFSI])以及有機溶液acetonitrile加上0.1M LiClO4輔助電解質,製備後的PEDOT電極以掃瞄式電子顯微鏡和X射線光電子能譜進行電極的表面結構分析和組成分析,分析結果發現在[BMI][BF4]離子液體中製備的PEDOT電極表面會有網狀多孔的形貌且具有較高的陰離子摻雜程度,相較於其他電解液中製備的PEDOT電極會有較高的電化學活性和良好的電容效果。
電容效能的測試上,以對稱型二極式的電容器裝置在水溶液和離子液體兩種電容電解液中進行。由測試結果發現以[BMI][BF4]離子液體製備的PEDOT電極組成的電容器會有最好的電容效果,在水溶液系統下,會有較高的比電容191 F/g,最大能量密度可達5.4 Wh/Kg,在離子液體系統下,最高比電容為183 F/g,由於離子液體會有較大的電位窗,使得最大能量密度可達12.5 Wh/Kg。從電容比較結果發現,使用離子液體作為製備電解液,能夠大幅提昇PEDOT電極的電容效果。
Poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes for supercapacitor applications were prepared by current pulse method from different electrolytes including room temperature ionic liquids 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMI][TFSI]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMI][BF4]), 1-allyl-3-(2-methoxyethyl)-imidazolium bis(trifluoromethylsulfonyl)imide ([AMO][TFSI]) and organic solution of 0.1M LiClO4 in acetonitrile (ACN).The SEM and XPS studies show that the PEDOT films electropolymerized in [BMI][BF4] are highly porous and have a higher degree of anion doping than the PEDOT films polymerized in other ionic liquds and LiClO4/ACN electrolytes.
The electrochemical performance of the symmetrical supercapacitor based on PEDOT electrodes were investigated in [EMI][BF4] ionic liquid, and 0.1M KClO4 aqueous electrolytes by cyclic voltammetry and galvanostatic charge-discharge test. The PEDOT electrodes were prepared from [BMI][BF4] ionic liquid exhibit higher capacitative performance than the other PEDOT electrodes. The PEDOT electrodes were prepared from [BMI][BF4] ionic liquid show high specific capacitance values of 191 F/g (in 0.1M KClO4 aqueous electrolyte) and 183 F/g (in [EMI][BF4] ionic liquid). The symmetrical supercapacitor based on PEDOT electrodes and [EMI][BF4] ionic liquid electrolyte shows maximum specific energy of 12.5 Wh/Kg and good cycle durability.
This study shows using ionic liquids as electrolytes for preparing PEDOT electrodes is an efficient way to improve performance of supercapacitors.
(1) Simon, P.; Gogotsi, Y. Nature Materials 2008, 7, 845.
(2) Miller, J. R.; Simon, P. Science 2008, 321, 651.
(3) Burke, A. Journal of Power Sources 2000, 91, 37.
(4) Conway, B. E. Transition from `supercapacitor' to `battery' behavior in electrochemical energy storage, 1990.
(5) Kotz, R.; Carlen, M. Electrochimica Acta 2000, 45, 2483.
(6) Pandolfo, A. G.; Hollenkamp, A. F. Journal of Power Sources 2006, 157, 11.
(7) Qu, D. Y.; Shi, H. Journal of Power Sources 1998, 74, 99.
(8) Pandey, G. P.; Hashmi, S. A.; Kumar, Y. Journal of the Electrochemical Society 2010, 157, A105.
(9) Subramanian, V.; Hall, S. C.; Smith, P. H.; Rambabu, B. Solid State Ionics 2004, 175, 511.
(10) Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Nano Letters 2011, 11, 2905.
(11) Brousse, T.; Toupin, M.; Dugas, R.; Athouel, L.; Crosnier, O.; Belanger, D. Journal of the Electrochemical Society 2006, 153, A2171.
(12) Gupta, V.; Kusahara, T.; Toyama, H.; Gupta, S.; Miura, N. Electrochemistry Communications 2007, 9, 2315.
(13) Fusalba, F.; Gouerec, P.; Villers, D.; Belanger, D. Journal of the Electrochemical Society 2001, 148, A1.
(14) Laforgue, A. Journal of Power Sources 2011, 196, 559.
(15) Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. Journal of Power Sources 1994, 47, 89.
(16) Pell, W. G.; Conway, B. E. Journal of Power Sources 2004, 136, 334.
(17) Hsieh, Y.-T.; Leong, T.-I.; Huang, C.-C.; Yeh, C.-S.; Sun, I. W. Chemical Communications 2010, 46, 484.
(18) Reiter, J.; Nadherna, M. Electrochimica Acta 2012, 71, 22.
(19) Liu, K.; Hu, Z.; Xue, R.; Zhang, J.; Zhu, J. Journal of Power Sources 2008, 179, 858.
(20) Ma, L.; Li, Y.; Yu, X.; Yang, Q.; Noh, C.-H. Solar Energy Materials and Solar Cells 2008, 92, 1253.
(21) Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J. H.; Rogers, R. D. Environmental Science & Technology 2002, 36, 2523.
(22) Dell'Anna, M. M.; Gallo, V.; Mastrorilli, P.; Nobile, C. F.; Romanazzi, G.; Suranna, G. P. Chemical Communications 2002, 434.
(23) Sun, Y.; Stalcup, A. M. Journal of Chromatography A 2006, 1126, 276.
(24) Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Journal of the Chemical Society-Chemical Communications 1977, 578.
(25) Snook, G. A.; Kao, P.; Best, A. S. Journal of Power Sources 2011, 196, 1.
(26) Carter, S. A.; Angelopoulos, M.; Karg, S.; Brock, P. J.; Scott, J. C. Applied Physics Letters 1997, 70, 2067.
(27) Donavan, K. C.; Arter, J. A.; Weiss, G. A.; Penner, R. M. Langmuir 2012, 28, 12581.
(28) Goward, G. R.; Leroux, F.; Nazar, L. F. Electrochimica Acta 1998, 43, 1307.
(29) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Advanced Functional Materials 2001, 11, 15.
(30) Plesse, C.; Khaldi, A.; Wang, Q.; Cattan, E.; Teyssie, D.; Chevrot, C.; Vidal, F. Smart Materials & Structures 2011, 20.
(31) Heuer, H. W.; Wehrmann, R.; Kirchmeyer, S. Advanced Functional Materials 2002, 12, 89.
(32) Lota, K.; Khomenko, V.; Frackowiak, E. Journal of Physics and Chemistry of Solids 2004, 65, 295.
(33) Mastragostino, M.; Arbizzani, C.; Soavi, F. Journal of Power Sources 2001, 97-8, 812.
(34) Rudge, A.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. Electrochimica Acta 1994, 39, 273.
(35) Ryu, K. S.; Kim, K. M.; Park, N. G.; Park, Y. J.; Chang, S. H. Journal of Power Sources 2002, 103, 305.
(36) Ferraris, J. P.; Eissa, M. M.; Brotherston, I. D.; Loveday, D. C.; Moxey, A. A. Journal of Electroanalytical Chemistry 1998, 459, 57.
(37) Talbi, H.; Just, P. E.; Dao, L. H. Journal of Applied Electrochemistry 2003, 33, 465.
(38) Ryu, K. S.; Kim, K. M.; Park, Y. J.; Park, N. G.; Kang, M. G.; Chang, S. H. Solid State Ionics 2002, 152, 861.
(39) Ryu, K. S.; Lee, Y. G.; Kim, K. M.; Park, Y. J.; Hong, Y. S.; Wu, X. L.; Kang, M. G.; Park, N. G.; Song, R. Y.; Ko, J. M. Synthetic Metals 2005, 153, 89.
(40) Sivakkumar, S. R.; Saraswathi, R. Journal of Power Sources 2004, 137, 322.
(41) Hussain, A. M. P.; Kumar, A.; Singh, F.; Avasthi, D. K. Journal of Physics D-Applied Physics 2006, 39, 750.
(42) Kulesza, P. J.; Skunik, M.; Baranowska, B.; Miecznikowski, K.; Chojak, M.; Karnicka, K.; Frackowiak, E.; Beguin, F.; Kuhn, A.; Delville, M. H.; Starobrzynska, B.; Ernst, A. Electrochimica Acta 2006, 51, 2373.
(43) Wu, M. Q.; Snook, G. A.; Gupta, V.; Shaffer, M.; Fray, D. J.; Chen, G. Z. Journal of Materials Chemistry 2005, 15, 2297.
(44) Park, J. H.; Park, O. O. Journal of Power Sources 2002, 111, 185.
(45) Hughes, M.; Chen, G. Z.; Shaffer, M. S. P.; Fray, D. J.; Windle, A. H. Composites Science and Technology 2004, 64, 2325.
(46) Snook, G. A.; Chen, G. Z. Journal of Electroanalytical Chemistry 2008, 612, 140.
(47) Snook, G. A.; Chen, G. Z.; Fray, D. J.; Hughes, M.; Shaffer, M. Journal of Electroanalytical Chemistry 2004, 568, 135.
(48) Tripathi, S. K.; Kumar, A.; Hashmi, S. A. Solid State Ionics 2006, 177, 2979.
(49) Wang, J.; Xu, Y.; Chen, X.; Du, X. Journal of Power Sources 2007, 163, 1120.
(50) Wang, J.; Xu, Y.; Chen, X.; Sun, X. Composites Science and Technology 2007, 67, 2981.
(51) Snook, G. A.; Peng, C.; Fray, D. J.; Chen, G. Z. Electrochemistry Communications 2007, 9, 83.
(52) Hashmi, S. A.; Latham, R. J.; Linford, R. G.; Schlindwein, W. S. Polymer International 1998, 47, 28.
(53) Balducci, A.; Henderson, W. A.; Mastragostino, M.; Passerini, S.; Simon, P.; Soavi, F. Electrochimica Acta 2005, 50, 2233.
(54) Xiao, Q. F.; Zhou, X. Electrochimica Acta 2003, 48, 575.
(55) Arbizzani, C.; Mastragostino, M.; Soavi, F. Journal of Power Sources 2001, 100, 164.
(56) Hong, J. I.; Yeo, I. H.; Paik, W. K. Journal of the Electrochemical Society 2001, 148, A156.
(57) Ryu, K. S.; Lee, Y. G.; Hong, Y. S.; Park, Y. J.; Wu, X. L.; Kim, K. M.; Kang, M. G.; Park, N. G.; Chang, S. H. Electrochimica Acta 2004, 50, 843.
(58) Villers, D.; Jobin, D.; Soucy, C.; Cossement, D.; Chahine, R.; Breau, L.; Belanger, D. Journal of the Electrochemical Society 2003, 150, A747.
(59) Faverolle, F.; Attias, A. J.; Bloch, B.; Audebert, P.; Andrieux, C. P. Chemistry of Materials 1998, 10, 740.
(60) Eftekhari, A. Nanostructured Conductive Polymers, 2010.
(61) Suematsu, S.; Oura, Y.; Tsujimoto, H.; Kanno, H.; Naoi, K. Electrochimica Acta 2000, 45, 3813.
(62) G. G. Wallace, G. M. S., L. A. P. Kane-Maguire and P. R. Teasdale CRC Press 2009.
(63) Liu, R.; Duay, J.; Lane, T.; Lee, S. B. Physical Chemistry Chemical Physics 2010, 12, 4309.
(64) Pandey, G. P.; Rastogi, A. C. Electrochimica Acta 2013, 87, 158.
(65) Patra, S.; Munichandraiah, N. Journal of Applied Polymer Science 2007, 106, 1160.
(66) Liu, R.; Il Cho, S.; Lee, S. B. Nanotechnology 2008, 19.
(67) Mo, D.; Zhou, W.; Ma, X.; Xu, J.; Zhu, D.; Lu, B. Electrochimica Acta 2014, 132, 67.
(68) Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electrochemistry Communications 2002, 4, 881.
(69) Pringle, J. M.; Efthimiadis, J.; Howlett, P. C.; Efthimiadis, J.; MacFarlane, D. R.; Chaplin, A. B.; Hall, S. B.; Officer, D. L.; Wallace, G. G.; Forsyth, M. Polymer 2004, 45, 1447.
(70) Li, M. C.; Ma, C. A.; Liu, B. Y.; Jin, Z. M. Electrochemistry Communications 2005, 7, 209.
(71) Deng, M.-J.; Chen, P.-Y.; Sun, I. W. Electrochimica Acta 2007, 53, 1931.
(72) Wu, T.-Y.; Wang, Y.-H.; Su, S.-G.; Lin, Y.-C.; Kuo, C.-W.; Chang, J.-K.; Sun, I. W. Journal of Chemical and Engineering Data 2015, 60, 471.
(73) 胡啟章 電化學原理與方法, 五南圖書出版股份有限公司, 2002.
(74) Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
(75) Pandey, G. P.; Rastogi, A. C. Journal of the Electrochemical Society 2012, 159, A1664.
(76) Pandey, G. P.; Hashmi, S. A. Bulletin of Materials Science 2013, 36, 729.
(77) Taouil, A. E.; Lallemand, F.; Hihn, J. Y.; Melot, J. M.; Blondeau-Patissier, V.; Lakard, B. Ultrasonics sonochemistry 2011, 18, 140.
(78) Moulder, J. F.; Chastain, J.; King, R. C. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Perkin-Elmer Eden Prairie, MN, 1992.
(79) Naudin, E.; Ho, H. A.; Branchaud, S.; Breau, L.; Belanger, D. Journal of Physical Chemistry B 2002, 106, 10585.
(80) Et Taouil, A.; Lallemand, F.; Hihn, J. Y.; Melot, J. M.; Blondeau-Patissier, V.; Lakard, B. Ultrasonics sonochemistry 2011, 18, 140.
(81) Carrillo, I.; Sanchez de la Blanca, E.; Fierro, J. L. G.; Raso, M. A.; Accion, F.; Enciso, E.; Redondo, M. I. Thin Solid Films 2013, 539, 154.
(82) Suojiang, Z.; Ning, S.; Xuezhong, H.; Xingmei, L.; Xiangping, Z. Journal of Physical and Chemical Reference Data 2006, 35, 1475.
(83) Pandey, G. P.; Rastogi, A. C.; Westgate, C. R. Journal of Power Sources 2014, 245, 857.