| 研究生: |
陳羿如 Chen, Yi-Ju |
|---|---|
| 論文名稱: |
摻雜氫之氧化鋅奈米線陣列的光電性質分析 Optical and electrical properties of H doped ZnO nanowires |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 氧化鋅 、奈米結構 、光學性質 |
| 外文關鍵詞: | ZnO, nanostucture, optical properties |
| 相關次數: | 點閱:76 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用水熱法(hydrothermal synthese)製成氧化鋅奈米線,以0.05M環六亞甲基四胺(hexamethylenetetramine)為前趨物與0.05M硝酸鋅六水合物(Zinc nitrate hexahydrate)作為鋅(Zn)來源配成20mL溶液於樣品瓶中,並加入少量聚乙烯基亞胺 (Polyethylenimine)之後放在93℃恆溫水槽中於Silicon(Si)基版和FTO(fluorine-doped tin oxide)玻璃上成長氧化鋅奈米線。再利用感應耦合式電漿蝕刻系統(Inductive Couple Plasma Etcher)分別以功率150W和600W的氫電漿來摻雜氫元素進入氧化鋅奈米線中。目的是要使用氫電漿處理法把氫元素摻雜進入氧化鋅中。
分析上利用掃瞄式電子顯微鏡 (Scanning Electron Microscopy,SEM)、X光繞射圖(X-Ray Diffraction,XRD)和穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)了解其表面形貌與微結構,使用二次離子質譜儀 (Secondary Ion Mass Spectrometer,SIMS)以及化學分析電子儀(Electron Spectr -oscopy for Chemical Analysis,ESCA)確定氫元素是否有摻雜進氧化鋅奈米線中及其摻雜濃度。利用陰極發光之光譜儀(Cathodoluminescence,CL)觀察單根奈米線發光部位,光致螢光激發光譜儀(Photoluminescence,PL),觀察氫摻雜的奈米線,在室溫及低溫發光性質。使用顯微拉曼光譜儀(Microscopes Raman Spectr -ometer)技術觀察摻雜後的聲子震盪模式,同時量測摻雜前後單根氧化鋅奈米線的電阻率。最後在外加電場情況下量測PL,而PL光譜會隨著電壓大小改變而改變。
In this research, we manufactured the ZnO nanowires on Si and FTO substrate by hydrothermal synthese. The precursor was 0.05M hexamethylenetetramine, 0.05M zinc nitrate hexahydrate as the source of ZnO, and a little polyethylenimine. Put all of them into a bottle with water to make 20mL solution. After that, put this bottle in a constant temperature water bath which temperature was 93℃ for 3 hours. Subsequently, we doped the hydrogen atoms into ZnO nanowires by inductive couple plasma etcher with hydrogen plasma powder kept at 150W and 600W.
The image of morphology was analyzed by SEM. Microstructure, defect surrounding, defect distribution and defect size were resolved by XRD and TEM. The hydrogen atom in ZnO nanowires was confirmed by SIMS and EXCA. CL was used to investigate luminescence situation in different part of a single nanowire. Besides this, both room temperature photoluminescence and temperature dependent photoluminescence was used to analysis luminescence properties of hydrogen doped ZnO nanowire. Raman spectra showed three abnormal phonon vibration modes after hydrogen doping. I-V measurement showed the difference in resistivity between un-doped ZnO nanowires and H-doped ZnO nanowires. At last, we did another photoluminescence analysis under present of electron field and photoluminescence spectrum change with electron voltage.
1. K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys. 81(12), 15 (1997)
2. M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A 19, 963 (2001)
3. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett. 83, 3401 (2003)
4.C. Xu, M. Kim, J. Chun, and D. Kim, Appl. Phys. Lett. 86, 133107 (2005)
5.S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B. 109,
2526 (2005)
6.J. B. Cui and U. J. Gibson, Appl. Phys. Lett. 87, 133108 (2005)
7.Q. H. Li, Q. Wan, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 86, 263101 (2005)
8.Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, and P.H. Fleming, Solid-State Electron. 47, 2269 (2003)
9.W. I. Park, S. J. An, J. L. Yang, G. –C. Yi, S. Hong, T. Joo, and M. Kim, J. Phys. Chem. B. 108, 15457 (2004)
10.M. Lorenz, E. M. Kaidashev, A. Rahm, T. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)
11.S. -M. Zhou, X. -H. Zhang, X. -M. Meng, S. -K. Wu, and S. -T. Lee, Phys. Status Solidi A-Appl. Res. 202, 405 (2005)
12.S. Y. Bae, H. W. Seo, and J. Park, J. Phys. Chem. B. 108, 5206 (2004)
13.B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003)
14.W. S. Hu, Z. G. Liu, R. X. Wu, Y.-F. Chen, W. Ji, T. Yu, and D. Feng, Appl. Phys. Lett. 71, 548 (1997).
15.M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A 19, 963 (2001).
16.S. Bloom and J. Ortenburger, J. Phys. Status Solidi (b) 58, 561 (1973)
17.施敏,張俊彥, “半導體元件物理與製作技術“,高立圖書有限公司, 2001年三版。
18.Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
19.Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H.Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
20.B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003)
21.R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64(5), 688 (1960).
22.W. -J. Li, E. -W. Shi, W. -Z. Zhong, and Z. -W. Yin, J. Crystal Growth. 203, 186 (1999)
23.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang Science. 292 1897 (2001).
24.Y. B. Li, Y. Bando, and D. Golberg Appl. Phys. Lett. 84 3603 (2004).
25.C. X. Xu, X. W. Sun, Clement Yuen, B. J. Chen, and S. F. Yu Appl. Phys. Lett. 86 011118 (2005).
26.K. Zou, X. Y. Qi , X. F. Duan, S. M. Zhou, and X. H. Zhang Appl. Phys. Lett. 86 013103 (2005).
27.W. L. Hughes and Z. L. Wang Appl. Phys. Lett. 86 043106 (2005).
28.L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, and W. Z. Song Appl. Phys.Lett. 86 083106 (2005).
29.R. C. Wang, C. P. Liu, and J. L. Huang Appl. Phys. Lett. 87 053103 (2005).
30.X. Zhang, Y. Zhang, J. Xu, Z. Wang, X. Chen, and D. Yu. Appl. Phys. Lett. 87 123111 (2005).
31.X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang* J. Am. Chem. Soc. 127 2378 (2005).
32.L. Vayssieres, K. Keis, A. Hagfledt, S. E. Lindquist, J. Phys. Chem. B. 105 (2001) 3350
33.L. Vayssieres, K. Keis, A. Hagfledt, S. E. Lindquist, Chem. Mater. 13 (2001) 4395
34.L. Vayssieres, Adv. Mater. 15 (2003) 464
35.L. E. Greene, M. Law, J. Goldburger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykelly, P. Yang, Angew. Chem. Int. Ed. 42 (2003) 3031
36.Y. Tak, K. Yong, J. Phys. Chem. B. 109 (2005) 19263
37.L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Inorganic Chem. 45 (2006) 7535
38.K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brain, J. Mater. Chem. 14 (2004) 2575
39.Schubert, M., Wurtsize Structure Material Infrared Ellipsometry on Semiconductor Layer Structures, 2005 209 :P. 109.
40. Tsuboi, M. and A. Wada, Optically Active Lattice Vibrations in Wurtsize Type Crystals of Zinc Oxide and Cadmium Sulfide. The Journal of Chemical Physics, 1968 48(6): p.2615-2618
41.Lu, Y. F., et al., The effect of thermal annealing on ZnO thin films grown by pulsed laser deposition. Journal of Appiled Physics, .2000. 88(1) p.498-520
42.B. H. Bairamov, A. H.,G. Irmer, V. V. Toporov, E. Zielger, Ramam study of the phonon halfwidths and the phonon lasmon coupling in ZnO. Physica status solidi (b), 1983. 119(1): p. 227-243
43.Ashkenov, N., et. al. Infrared dielectric functions and phonon modes of high quality ZnO films. Journal of Appiled Physics, .2003. 93(1): p. 126-133
44.Reuss, F., et al., Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO. Journal of Applied Physics, 2004. 95(7): p. 3385-3390.
45.Bundesmann, C.; Ashkenov, N.; Schubert,M.; Spemann, D.; Butz,T.; Kaidashev, E.M.; Lorenz,M.; Grundmann,M. Appl. Phys. Lett. 2003, 83,
1974.
46.Manjo ´n, F. J.; Marı ´, B.; Serrano, J.; Romero, A. H. J. Appl. Phys. 2005, 97, 053516
47.Kohan, A. F.,et al., First principles study of native point defectsin ZnO. Physical Review B, 2000. 61(22): p.15019
48.Van der Walle, C. G., Defect analysis and engineering in ZnO. Physics review B: Condenced matter, 2001 308-310 : p. 899-930
49.Reshchikov, M. A., R.Y. Korotkov, Analysis of the temperature and exciton intensity dependencies of photolumiscence in undoped GaN films. Physics review B 2001. 64(11): p. 115205
50.J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett. 83 3401 (2003)
51.C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett. 84 1540 (2004).
52.S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B 109 2526 (2005).
53.J. Jie, G. Wang, X. Han, and J. G. Hou, J. Phys. Chem. B 108, 17027 (2004).
54.T. S. Moss, Proc. Phys. Soc. London, Ser. B 67 775 (1954).
55.E. Burstein, Phys. Rev. 93 632 (1954).
56.B. E. Sernelius, K. -F. Berggren, Z. -C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev. B 37 10244 (1988).
57.R. A. Abram, G. J. Rees , and B. L. H. Wilson, Adv. Phys. 27 799 (1978).
58.C. G. Van de Walle and J. Neugebauer, Nature, 423(5) 626-628 (2003).
59.C. G. Van de Walle, Physics Review Letters, 85 1012-1015 (2000).
60.Naoki Ohashi, Takamasa Ishigaki, Nobuhiro Okada, Hiroyuki Taguchi, Isao Sakaguchi, Shunichi Hishita, Takashi Sekiguchi, and Hajime Haneda, Journal of Applied Physics, (93) 10 2003
61.A. Y. Polyakov, N. B. Smirnov, and A. V. Govorkov, B. Luo and F. Ren, Journal of Applied Physics, (94) 1 2003
62.J. Chevallier, Material Science and Engineering B, 71 62-68 (2002).
63.E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle and R. Helbig, Physical
Review B, 66 165205 (2002).
64.徐煥棠, “摻雜稀土元素於磷砷化銦鎵之特性研究”, 私立中原大學, 碩士論文 (2001).
65.K. Thonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer, Physica B 308-310, 945 ~2001.
66.Sergei B. Orlinskii, Jan Schmidt, Pavel G. Baranov, Physics Review Letters, 88 (2002) 045504
67.X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrophotoluminescence of ZnO film,” Appl. Phys. Lett. 91(2), 021105 (2007).
68.張木彬、李灝銘,國立中央大學環境工程研究所,「電漿處理技術於環境工程之應用與發展趨勢」
69.D. B. Williams and C. B. Carter, “Transmisison Electron Microscopy”, Plenum, New York (1996).
70.K. Ozawa and K. Edamoto, Surf. Sci. 524,78 2003
71.Chin-Ching Lin, Hung-Pei Chen, Hung-Chou Liao, and San-Yuan Chen, Appl. Phys. Lett. 86, 2005 p.183103
72.Sun, J.-C. and et al., Realization of Ultraviolet Electroluminescence from ZnO Homojunction Fabricated on Silicon Substrate with P-type ZnO:N Layer Formed by Radical N 2 O doping. Chinese Physics Letters 2008. 25 (12): p.4345.
73.Ozgur, U., et al., A comprehensive review of ZnO material and devices. Journal of Applied Physics, 2005 (98) 4 :p.041301-103
74.Ozgur, U., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): p. 041301-103.
75.B. K. Meyer, H. Alves, D. M. Hofmann1, W. Kriegseis, D. Forster,F. Bertram, J.Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Stat. Sol. (b) 241, No. 2, 231–260 (2004)
76.B.K. Meyer, J Sann, D M Hofmann, C Neumann and A Zeuner, Semicond. Sci. Technol. 20 (2005) S62–S66
77.Teke, A.; O ¨ zgu ¨r, U ¨ .; Dogan, S.; Gu, X.; Morkoc ¸, H.; Nemeth, B.;Nause, J.; Everitt, H. O. Phys. Rev. B 2004, 70, 195207.
78.Lavrov, E. V.; Herklotz, F.; Weber, J. Phys. Rev. B 2009, 79, 165210
79.Wardle, M. G.; Goss, J. P.; Briddon, P. R. Phys. Rev. Lett. 2006,96, 205504.
80.Bang, J.; Chang, K. J. Appl. Phys. Lett. 2008, 92, 132109
81.Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).
82.Y. S. Park, T. W. Kang, and R. A. Taylor, Nanotechnology 19,475402 (2008).
83.Reuss, F.; Kirchner, C.; Gruber, Th.; Kling, R.; Maschek, S.;Limmer,W.;Waag, A.; Ziemann, P. J. Appl. Phys. 2004, 95, 3385
84.Sann, J.; Stehr, J.; Hofstaetter, A.; Hofmann, D. M.; Neumann, A.;Lerch, M.; Haboeck, U.; Hoffmann, A.; Thomsen, C. Phys. Rev. B 2007, 76, 195203.
85.Bundesmann, C.; Ashkenov, N.; Schubert,M.; Spemann, D.; Butz,T.; Kaidashev, E.M.; Lorenz,M.; Grundmann,M. Appl. Phys. Lett. 2003, 83, 1974.
86.Manjo ´n, F. J.; Marı ´, B.; Serrano, J.; Romero, A. H. J. Appl. Phys. 2005, 97, 053516
87.J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang, and Paul K. Chu, Applied Materials and Interfaces, 2010. 2 (6): p.1780-1784