簡易檢索 / 詳目顯示

研究生: 陳羿如
Chen, Yi-Ju
論文名稱: 摻雜氫之氧化鋅奈米線陣列的光電性質分析
Optical and electrical properties of H doped ZnO nanowires
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 氧化鋅奈米結構光學性質
外文關鍵詞: ZnO, nanostucture, optical properties
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用水熱法(hydrothermal synthese)製成氧化鋅奈米線,以0.05M環六亞甲基四胺(hexamethylenetetramine)為前趨物與0.05M硝酸鋅六水合物(Zinc nitrate hexahydrate)作為鋅(Zn)來源配成20mL溶液於樣品瓶中,並加入少量聚乙烯基亞胺 (Polyethylenimine)之後放在93℃恆溫水槽中於Silicon(Si)基版和FTO(fluorine-doped tin oxide)玻璃上成長氧化鋅奈米線。再利用感應耦合式電漿蝕刻系統(Inductive Couple Plasma Etcher)分別以功率150W和600W的氫電漿來摻雜氫元素進入氧化鋅奈米線中。目的是要使用氫電漿處理法把氫元素摻雜進入氧化鋅中。
    分析上利用掃瞄式電子顯微鏡 (Scanning Electron Microscopy,SEM)、X光繞射圖(X-Ray Diffraction,XRD)和穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)了解其表面形貌與微結構,使用二次離子質譜儀 (Secondary Ion Mass Spectrometer,SIMS)以及化學分析電子儀(Electron Spectr -oscopy for Chemical Analysis,ESCA)確定氫元素是否有摻雜進氧化鋅奈米線中及其摻雜濃度。利用陰極發光之光譜儀(Cathodoluminescence,CL)觀察單根奈米線發光部位,光致螢光激發光譜儀(Photoluminescence,PL),觀察氫摻雜的奈米線,在室溫及低溫發光性質。使用顯微拉曼光譜儀(Microscopes Raman Spectr -ometer)技術觀察摻雜後的聲子震盪模式,同時量測摻雜前後單根氧化鋅奈米線的電阻率。最後在外加電場情況下量測PL,而PL光譜會隨著電壓大小改變而改變。

    In this research, we manufactured the ZnO nanowires on Si and FTO substrate by hydrothermal synthese. The precursor was 0.05M hexamethylenetetramine, 0.05M zinc nitrate hexahydrate as the source of ZnO, and a little polyethylenimine. Put all of them into a bottle with water to make 20mL solution. After that, put this bottle in a constant temperature water bath which temperature was 93℃ for 3 hours. Subsequently, we doped the hydrogen atoms into ZnO nanowires by inductive couple plasma etcher with hydrogen plasma powder kept at 150W and 600W.
    The image of morphology was analyzed by SEM. Microstructure, defect surrounding, defect distribution and defect size were resolved by XRD and TEM. The hydrogen atom in ZnO nanowires was confirmed by SIMS and EXCA. CL was used to investigate luminescence situation in different part of a single nanowire. Besides this, both room temperature photoluminescence and temperature dependent photoluminescence was used to analysis luminescence properties of hydrogen doped ZnO nanowire. Raman spectra showed three abnormal phonon vibration modes after hydrogen doping. I-V measurement showed the difference in resistivity between un-doped ZnO nanowires and H-doped ZnO nanowires. At last, we did another photoluminescence analysis under present of electron field and photoluminescence spectrum change with electron voltage.

    總目錄 中文摘要.......................................I 英文摘要.......................................II 致謝......................................... III 總目錄........................................ IV 圖目錄........................................VII 表目錄..........................................XII 第一章 緒論.......................................1 1-1 前言.........................................1 1-2 研究動機與目的.................................1 第二章 文獻回顧....................................3 2-1氧化鋅的晶體結構及特性...........................3 2-1-1晶體結構.....................................3 2-1-2極性表面與壓電特性.............................3 2-1-3熱穩定性......................................4 2-1-4能帶結構......................................4 2-2氧化鋅的理想晶體.................................8 2-3氧化鋅奈米材料合成方法............................9 2-3-1 熱化學氣相沉積法(thermal CVD).................9 2-3-2 模板(template)輔助成長法......................9 2-3-3 水熱法(hydrothermal synthese)................10 2-4 氧化鋅的晶格振盪.................................11 2-5 氧化鋅的本質缺陷.................................19 2-6 氧化鋅的摻雜....................................21 2-7 氧化鋅之氫元素掺雜效應............................23 2-7-1 氧化鋅之氫元素掺雜對螢光光譜(PL)的影響.............26 2-8 有外加電場的情況下的PL光譜分析......................29 第三章 實驗步驟與方法..................................31 3-1 實驗材料.........................................31 3-2 使用基板.........................................31 3-3 氧化鋅奈米結構的合成...............................31 3-4 氫元素之摻雜......................................32 3-5 微結構、成份分析..................................33 3-5-1 掃描式電子顯微鏡................................33 3-5-2 高解析穿透式電子顯微鏡(High Resoluion Transmission Electron Microscopy,HRTEM)........................34 3-5-3 X光繞射圖(XRD).................................37 3-6 成份分析..........................................37 3-6-1 二次離子質譜儀 (SIMS)............................37 3-6-2 化學分析電子儀 (Electron Spectroscopy for Chemical Analysis)..........................................38 3-7 光學性質分.........................................39 3-7-1 微觀拉曼光譜量測系統 (μ-Raman)....................39 3-7-2 光致螢光激發光譜 (PL).............................41 3-8 電流-電壓量測 (Current-Voltage, I-V)................43 第四章 結果與討論.......................................46 4-1 以水熱法合成之氧化鋅奈米線陣列的表面形貌及晶體結構分析...46 4-1-1 SEM 分析.........................................46 4-1-2 XRD 分析.........................................52 4-1-3 TEM結果..........................................53 4-2 成分分析...........................................60 4-2-1 SIMS分析.........................................60 4-2-1 ESCA分析........................................63 4-3 光性分析...........................................64 4-3-1 單根奈米線之陰極發光光譜儀(CL)分析結果..............64 4-3-2 室溫PL光譜分析...................................68 4-3-3 變溫PL光譜分析....................................71 4-4 拉曼光譜分析........................................80 4-5 電性質分析..........................................82 4-5-1室溫電阻率量測.....................................82 4-5-2 有外加電場的情況下的PL光譜分析......................85 第五章 結論.............................................87 第六章 參考資料.........................................89 圖目錄 Fig 2-1 氧化鋅晶格結構示意圖,其中a和c是晶格常數,uc為沿[0001]方 向鋅原子平面與氧原子平面的距離............................5 Fig 2-2 氧化鋅的電子能帶結構圖............................6 Fig 2-3 (a) 用水熱法在氫氧化鈉介質中成長的氧化鋅晶體 (b) Laudise 提出的氧化鋅理想晶體成長晶僻面模型.........................8 Fig 2-4 拉曼散射的能階變化圖,史托克及反史托克效應躍遷過程不同,但 差值相等..............................................15 Fig 2-5 分子與光交互作用,改變電子雲的分布.................16 Fig 2-6 拉曼散射中,史托克及反史托克側峰值的強度比較.........16 Fig 2-7 氧化鋅位於Γ-point的 6 種光頻震盪模式...............17 Fig 2-8 典型的純氧化鋅拉曼光譜,可觀察到 E1-TO、A1-LO 及 E2的震 盪模式.................................................18 Fig 2-9 理論計算的氧化鋅本質缺陷的生成能,為費米能階的函數,費米 能階為 0 處,是價帶頂端(a)在富鋅環境下(b)在富氧環境下.......20 Fig 2-10 Burstein-Moss效應與Many-body效應示意圖 (a)摻混之前材 料之能帶結構 (b)高濃度摻混使電子佔據價帶底部造成光學能隙寬化,即 Burstein-Moss效應 (c)高濃度摻混引發多體效應(Many-body)造成能 帶扭曲導致光學能隙窄化...................................22 Fig 2-11 氫原子在ZnO中的的鍵結方式........................25 Fig 2-12 氫原子以H+的形式存在於氧化鋅中....................25 Fig 2-13 Ma等人實驗裝置示意圖,及PL光譜分析結果............30 Fig 2-14 此裝置之能帶圖 (a)未加電壓時 (b)施加順向偏壓 (c) 施加逆 向偏壓................................................30 Fig 3-1 (a) TEM之設備圖 (b) 藉由選取直射電子束或是繞射電子束來 獲得明視野或是暗視野....................................36 Fig 3-2 μ-Raman光譜儀配置圖.............................40 Fig 3-3 He-Cd激發源光致螢光激發光譜儀之配置圖.............42 Fig 3-4 兩點量測試片之製作步驟 (a~c) 側視圖 (d) 俯視圖.....44 Fig 3-5 電性量測系統.....................................45 Fig 4-1 純氧化鋅奈米陣列之SEM圖 (a) 高倍率SEM俯視圖 (b) 低倍率 SEM俯視圖 (c)SEM側視圖.................................48 Fig 4-2 成長在FTO玻璃上之純氧化鋅奈米陣列之SEM圖 (a) 高倍率SEM俯 視圖 (b) 低倍率SEM俯視圖 (c)SEM側視圖.....................49 Fig 4-3 經過功率150W氫電漿處理之氧化鋅奈米陣列之SEM圖 (a) SEM俯 視圖 (b) SEM側視圖 (c)SEM側視圖中的奈米線上端(頭端) (d) SEM側 視圖中的奈米線下端(尾端)................................50 Fig 4-4 經過功率600W氫電漿處理之氧化鋅奈米陣列之SEM圖 (a) 高倍率 SEM俯視圖 (b) 低倍率SEM俯視圖 (c) SEM側視圖 (d) SEM側視圖中 的奈米線下端(尾端).....................................51 Fig 4-5 純氧化鋅奈米線、150W氫電漿處理氧化鋅奈米線、600W氫電漿處 理氧化鋅奈米線和退火後的氧化鋅奈米線,這四種試片之X-ray 結晶繞 射分析.................................................52 Fig 4-6 單根純氧化鋅奈米線的TEM影像 (a)明視野像和電子繞射圖(b) a 圖中奈米線b點HRTEM影像 (c) a圖中奈米線c點HRTEM影像 (d) EDX分 析結果...............................................56 Fig 4-7 經過功率150W氫電漿處理之氧化鋅奈米線的TEM分析結果 (a) 明 視野像 (b) 電子繞射圖 (c) a圖中奈米線c點的HRTEM影像 (d) a圖中 奈米線c點和d點的EDX分析結果..............................57 Fig 4-8 經過功率600W氫電漿處理之氧化鋅奈米線的TEM分析結果(a) 明 視野像 (b) 電子繞射圖 (c) a圖中奈米線c點HRTEM影像 (d) a圖中奈 米線d點HRTEM影像.......................................58 Fig 4-9 經過600W氫電漿處理之後在去作500℃,2小時的退火的氧化鋅奈 米線的TEM分析結果(a) 明視野像 (b) 電子繞射圖 (c) a圖中奈米線c 點HRTEM影像 (d) a圖中奈米線d點HRTEM影像................59 Fig 4-10 經過功率150W氫電漿處理之氧化鋅奈米陣列之SIMS分析...61 Fig 4-11 經過功率600W氫電漿處理之氧化鋅奈米陣列之SIMS分析...62 Fig 4-12 三種試片的SIMS的氫元素分析.......................62 Fig 4-13 Zn 2p鍵結的ESCA分析結果.........................63 Fig 4-14 經過功率150W氫電漿處理之氧化鋅奈米線 (a)單根奈米線的 SEM (b) 單根奈米線的CL mapping (c) A、B兩端點的單點CL分析65 Fig 4-15 經過功率600W氫電漿處理之氧化鋅奈米線 (a)單根奈米線的 SEM (b) 單根奈米線的CL mapping (c) A、B兩端點的單點CL分析66 Fig 4-16 純氧化鋅奈米線 (a)單根奈米線的CL mapping (b) 單根奈米 線的SEM...............................................67 Fig 4-17 (a)純氧化鋅奈米線、經150W氫電漿處理之氧化鋅奈米線、經 600W氫電漿處理之氧化鋅奈米線這三者之常溫PL光譜分析桔果 (b)強度 正常化之後的曲線........................................70 Fig 4-18 激子越遷的能階圖................................75 Fig 4-19 純氧化鋅奈米線在溫度20K的PL光譜...................75 Fig 4-20 經150W氫電漿處理之氧化鋅奈米線在溫度20K的PL光譜....76 Fig 4-21 經600W氫電漿處理之氧化鋅奈米線在溫度20K的PL光譜....76 Fig 4-22 純氧化鋅奈米線、150W氫電漿處理氧化鋅奈米線和600W氫電漿處 理氧化鋅奈米線這三種試片之低溫PL光譜.....................77 Fig 4-23 經600W氫電漿處理之試片作500℃,2小時的退火處理後的低溫 PL光譜................................................78 Fig 4-24 純氧化鋅奈米線、退火後的600W氫電漿處理氧化鋅奈米線和600W 氫電漿處理氧化鋅奈米線這三種試片之低溫PL光譜...............78 Fig 4-25 (a)純氧化鋅奈米線、(b)150W氫電漿處理氧化鋅奈米線和(c) 600W氫電漿處理氧化鋅奈米線這三種試片D0X發光波長與溫度關係圖.79 Fig 4 26 純氧化鋅奈米線、150W氫電漿處理氧化鋅奈米線和600W氫電漿處 理氧化鋅奈米線這三種試片之拉曼繞射分析(已對E2-high進行強度正常 化處理)...............................................81 Fig 4-27 純氧化鋅奈米線電性量測 (a)成長密集的氧化鋅奈米線SEM俯視 圖 (b) SEM 側向圖 (c) 氧化鋅奈米線與電極相接示意圖 (d) I-V curve 量測結果........................................83 Fig 4-28 氫摻雜氧化鋅奈米線電性量測 (a)成長密集的氧化鋅奈米線SEM 俯視圖 (b) SEM 側向圖 (c) 氧化鋅奈米線與電極相接示意圖 (d) I- V curve 量測結果......................................84 Fig 4-29 純氧化鋅奈米線在施加電場之下的PL光譜分析 (a) 原始強度 (b) 對UV peak強度正常化之後............................86 Fig 4-30 摻雜氫的氧化鋅奈米線在施加電場之下的PL光譜分析(a)原始強 度 (b) 對UV peak強度正常化之後.........................86 表目錄 Table 1 一些半導體化合物之物理性質..........................7 Table 2 純氧化鋅在拉曼光譜與紅外線光譜中,所具有的波數........17 Table 3 目前被觀察到因摻雜而出現的新穎的拉曼震盪模式[60]......18 Table 4 自由激子與缺陷捕捉的激子發光位置及相關峰值............77

    1. K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys. 81(12), 15 (1997)
    2. M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A 19, 963 (2001)
    3. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett. 83, 3401 (2003)
    4.C. Xu, M. Kim, J. Chun, and D. Kim, Appl. Phys. Lett. 86, 133107 (2005)
    5.S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B. 109,
    2526 (2005)
    6.J. B. Cui and U. J. Gibson, Appl. Phys. Lett. 87, 133108 (2005)
    7.Q. H. Li, Q. Wan, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett. 86, 263101 (2005)
    8.Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, and P.H. Fleming, Solid-State Electron. 47, 2269 (2003)
    9.W. I. Park, S. J. An, J. L. Yang, G. –C. Yi, S. Hong, T. Joo, and M. Kim, J. Phys. Chem. B. 108, 15457 (2004)
    10.M. Lorenz, E. M. Kaidashev, A. Rahm, T. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)
    11.S. -M. Zhou, X. -H. Zhang, X. -M. Meng, S. -K. Wu, and S. -T. Lee, Phys. Status Solidi A-Appl. Res. 202, 405 (2005)
    12.S. Y. Bae, H. W. Seo, and J. Park, J. Phys. Chem. B. 108, 5206 (2004)
    13.B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003)
    14.W. S. Hu, Z. G. Liu, R. X. Wu, Y.-F. Chen, W. Ji, T. Yu, and D. Feng, Appl. Phys. Lett. 71, 548 (1997).
    15.M. Chen, Z. L. Pei, X. Wang, C. Sun, and L. S. Wen, J. Vac. Sci. Technol. A 19, 963 (2001).
    16.S. Bloom and J. Ortenburger, J. Phys. Status Solidi (b) 58, 561 (1973)
    17.施敏,張俊彥, “半導體元件物理與製作技術“,高立圖書有限公司, 2001年三版。
    18.Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    19.Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H.Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
    20.B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003)
    21.R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64(5), 688 (1960).
    22.W. -J. Li, E. -W. Shi, W. -Z. Zhong, and Z. -W. Yin, J. Crystal Growth. 203, 186 (1999)
    23.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang Science. 292 1897 (2001).
    24.Y. B. Li, Y. Bando, and D. Golberg Appl. Phys. Lett. 84 3603 (2004).
    25.C. X. Xu, X. W. Sun, Clement Yuen, B. J. Chen, and S. F. Yu Appl. Phys. Lett. 86 011118 (2005).
    26.K. Zou, X. Y. Qi , X. F. Duan, S. M. Zhou, and X. H. Zhang Appl. Phys. Lett. 86 013103 (2005).
    27.W. L. Hughes and Z. L. Wang Appl. Phys. Lett. 86 043106 (2005).
    28.L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, and W. Z. Song Appl. Phys.Lett. 86 083106 (2005).
    29.R. C. Wang, C. P. Liu, and J. L. Huang Appl. Phys. Lett. 87 053103 (2005).
    30.X. Zhang, Y. Zhang, J. Xu, Z. Wang, X. Chen, and D. Yu. Appl. Phys. Lett. 87 123111 (2005).
    31.X. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang* J. Am. Chem. Soc. 127 2378 (2005).
    32.L. Vayssieres, K. Keis, A. Hagfledt, S. E. Lindquist, J. Phys. Chem. B. 105 (2001) 3350
    33.L. Vayssieres, K. Keis, A. Hagfledt, S. E. Lindquist, Chem. Mater. 13 (2001) 4395
    34.L. Vayssieres, Adv. Mater. 15 (2003) 464
    35.L. E. Greene, M. Law, J. Goldburger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykelly, P. Yang, Angew. Chem. Int. Ed. 42 (2003) 3031
    36.Y. Tak, K. Yong, J. Phys. Chem. B. 109 (2005) 19263
    37.L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Inorganic Chem. 45 (2006) 7535
    38.K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brain, J. Mater. Chem. 14 (2004) 2575
    39.Schubert, M., Wurtsize Structure Material Infrared Ellipsometry on Semiconductor Layer Structures, 2005 209 :P. 109.
    40. Tsuboi, M. and A. Wada, Optically Active Lattice Vibrations in Wurtsize Type Crystals of Zinc Oxide and Cadmium Sulfide. The Journal of Chemical Physics, 1968 48(6): p.2615-2618
    41.Lu, Y. F., et al., The effect of thermal annealing on ZnO thin films grown by pulsed laser deposition. Journal of Appiled Physics, .2000. 88(1) p.498-520
    42.B. H. Bairamov, A. H.,G. Irmer, V. V. Toporov, E. Zielger, Ramam study of the phonon halfwidths and the phonon lasmon coupling in ZnO. Physica status solidi (b), 1983. 119(1): p. 227-243
    43.Ashkenov, N., et. al. Infrared dielectric functions and phonon modes of high quality ZnO films. Journal of Appiled Physics, .2003. 93(1): p. 126-133
    44.Reuss, F., et al., Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO. Journal of Applied Physics, 2004. 95(7): p. 3385-3390.
    45.Bundesmann, C.; Ashkenov, N.; Schubert,M.; Spemann, D.; Butz,T.; Kaidashev, E.M.; Lorenz,M.; Grundmann,M. Appl. Phys. Lett. 2003, 83,
    1974.
    46.Manjo ´n, F. J.; Marı ´, B.; Serrano, J.; Romero, A. H. J. Appl. Phys. 2005, 97, 053516
    47.Kohan, A. F.,et al., First principles study of native point defectsin ZnO. Physical Review B, 2000. 61(22): p.15019
    48.Van der Walle, C. G., Defect analysis and engineering in ZnO. Physics review B: Condenced matter, 2001 308-310 : p. 899-930
    49.Reshchikov, M. A., R.Y. Korotkov, Analysis of the temperature and exciton intensity dependencies of photolumiscence in undoped GaN films. Physics review B 2001. 64(11): p. 115205
    50.J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H. M. Ng, W. Jiang, and E. L. Garfunkel, Appl. Phys. Lett. 83 3401 (2003)
    51.C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett. 84 1540 (2004).
    52.S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B 109 2526 (2005).
    53.J. Jie, G. Wang, X. Han, and J. G. Hou, J. Phys. Chem. B 108, 17027 (2004).
    54.T. S. Moss, Proc. Phys. Soc. London, Ser. B 67 775 (1954).
    55.E. Burstein, Phys. Rev. 93 632 (1954).
    56.B. E. Sernelius, K. -F. Berggren, Z. -C. Jin, I. Hamberg, and C. G. Granqvist, Phys. Rev. B 37 10244 (1988).
    57.R. A. Abram, G. J. Rees , and B. L. H. Wilson, Adv. Phys. 27 799 (1978).
    58.C. G. Van de Walle and J. Neugebauer, Nature, 423(5) 626-628 (2003).
    59.C. G. Van de Walle, Physics Review Letters, 85 1012-1015 (2000).
    60.Naoki Ohashi, Takamasa Ishigaki, Nobuhiro Okada, Hiroyuki Taguchi, Isao Sakaguchi, Shunichi Hishita, Takashi Sekiguchi, and Hajime Haneda, Journal of Applied Physics, (93) 10 2003
    61.A. Y. Polyakov, N. B. Smirnov, and A. V. Govorkov, B. Luo and F. Ren, Journal of Applied Physics, (94) 1 2003
    62.J. Chevallier, Material Science and Engineering B, 71 62-68 (2002).
    63.E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle and R. Helbig, Physical
    Review B, 66 165205 (2002).
    64.徐煥棠, “摻雜稀土元素於磷砷化銦鎵之特性研究”, 私立中原大學, 碩士論文 (2001).
    65.K. Thonke, Th. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer, Physica B 308-310, 945 ~2001.
    66.Sergei B. Orlinskii, Jan Schmidt, Pavel G. Baranov, Physics Review Letters, 88 (2002) 045504
    67.X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, “Electrophotoluminescence of ZnO film,” Appl. Phys. Lett. 91(2), 021105 (2007).
    68.張木彬、李灝銘,國立中央大學環境工程研究所,「電漿處理技術於環境工程之應用與發展趨勢」
    69.D. B. Williams and C. B. Carter, “Transmisison Electron Microscopy”, Plenum, New York (1996).
    70.K. Ozawa and K. Edamoto, Surf. Sci. 524,78 2003
    71.Chin-Ching Lin, Hung-Pei Chen, Hung-Chou Liao, and San-Yuan Chen, Appl. Phys. Lett. 86, 2005 p.183103
    72.Sun, J.-C. and et al., Realization of Ultraviolet Electroluminescence from ZnO Homojunction Fabricated on Silicon Substrate with P-type ZnO:N Layer Formed by Radical N 2 O doping. Chinese Physics Letters 2008. 25 (12): p.4345.
    73.Ozgur, U., et al., A comprehensive review of ZnO material and devices. Journal of Applied Physics, 2005 (98) 4 :p.041301-103
    74.Ozgur, U., et al., A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005. 98(4): p. 041301-103.
    75.B. K. Meyer, H. Alves, D. M. Hofmann1, W. Kriegseis, D. Forster,F. Bertram, J.Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Stat. Sol. (b) 241, No. 2, 231–260 (2004)
    76.B.K. Meyer, J Sann, D M Hofmann, C Neumann and A Zeuner, Semicond. Sci. Technol. 20 (2005) S62–S66
    77.Teke, A.; O ¨ zgu ¨r, U ¨ .; Dogan, S.; Gu, X.; Morkoc ¸, H.; Nemeth, B.;Nause, J.; Everitt, H. O. Phys. Rev. B 2004, 70, 195207.
    78.Lavrov, E. V.; Herklotz, F.; Weber, J. Phys. Rev. B 2009, 79, 165210
    79.Wardle, M. G.; Goss, J. P.; Briddon, P. R. Phys. Rev. Lett. 2006,96, 205504.
    80.Bang, J.; Chang, K. J. Appl. Phys. Lett. 2008, 92, 132109
    81.Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967).
    82.Y. S. Park, T. W. Kang, and R. A. Taylor, Nanotechnology 19,475402 (2008).
    83.Reuss, F.; Kirchner, C.; Gruber, Th.; Kling, R.; Maschek, S.;Limmer,W.;Waag, A.; Ziemann, P. J. Appl. Phys. 2004, 95, 3385
    84.Sann, J.; Stehr, J.; Hofstaetter, A.; Hofmann, D. M.; Neumann, A.;Lerch, M.; Haboeck, U.; Hoffmann, A.; Thomsen, C. Phys. Rev. B 2007, 76, 195203.
    85.Bundesmann, C.; Ashkenov, N.; Schubert,M.; Spemann, D.; Butz,T.; Kaidashev, E.M.; Lorenz,M.; Grundmann,M. Appl. Phys. Lett. 2003, 83, 1974.
    86.Manjo ´n, F. J.; Marı ´, B.; Serrano, J.; Romero, A. H. J. Appl. Phys. 2005, 97, 053516
    87.J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang, and Paul K. Chu, Applied Materials and Interfaces, 2010. 2 (6): p.1780-1784

    下載圖示 校內:2013-08-24公開
    校外:2013-08-24公開
    QR CODE