簡易檢索 / 詳目顯示

研究生: 汪昇毅
Wang, Sheng-Yi
論文名稱: 具雙重粗化奈米結構氧化鎳感測膜之製備及其於pH感測器之應用研究
Development of high performance pH sensors based on nickle oxide nanostructures on Si platform with a double-fold surface roughening
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: 濕式蝕刻矽角錐濺鍍法氧化鎳水熱法酸鹼感測器延伸式閘極場效電晶體
外文關鍵詞: Pyramidal cones, etch, NiO, HTG, EGFET, pH sensors
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用濕式蝕刻法製備出矽角錐平台,並利用濺鍍法沉積與水熱法(Hydrothermal Growth, HTG)分別成長氧化鎳(Nickle Oxide, NiO)薄膜與奈米片於矽角錐平台上,結合延伸式閘極場效電晶體之架構(Extended-Gate Field-Effect Transistor, EGFET)應用於pH感測之開發。本研究所採用之濕式蝕刻技術製備矽角錐平台與HTG技術具低備製程成本、簡易、可大面積製備以及製備時間短等優點,且可藉由角錐平台所增加之表面積與HTG NiO奈米片之高感測面積的雙重面積提升效果,大幅強化吸附待測溶液中氫離子的能力,進而改善pH感測能力。
    本論文之研究工作分為三部分,第一部分為藉由濕式蝕刻法KOH/IPA溶液製備出矽角錐平台,並藉由調變蝕刻溫度改變其表面形貌,探討不同蝕刻溫度蝕刻所得矽角錐表面形貌對pH感測特性之影響,比較並分析利用矽平面與最佳蝕刻參數所製備角錐平台pH感測器之特性。於pH感測特性量測上,本研究使用Keithley 2636A作為電特性之量測,EGFET則採用市售之CD4007UB n-MOSFET,參考電極為Ag/AgCl,量測溫度固定為300K,延伸式閘極與參考電極距離固定為2 cm。
    第二部分旨在比較濺鍍NiO薄膜於平面與角錐粗化矽基板上的pH感測特性。藉由調變不同沉積時間觀察於兩種矽基板上的表面形貌變化,輔以SEM、及X-光繞射(X-Ray Diffraction, XRD)等材料分析,探討NiO薄膜之表面形貌與材料成分並比較其在pH量測特性之表現。
    第三部分為利用水熱法製備NiO奈米片,觀察不同水熱成長時間在角錐粗化矽基板上的表面形貌變化。透過SEM觀察其表面形貌以及XRD與TEM材料分析。探討不同成長時間感測膜與退火溫度對pH感測特性之影響。實驗顯示,於所製備NiO奈米片pH感測器中,以水熱成長7.5小時於矽角錐基板上之NiO奈米片元件擁有最佳之感測特性。實驗結果顯示,於水熱成長7.5小時之Ni(OH)2奈米片元件,經在空氣氛圍下退火溫度400°C進行40分鐘熱退火處理,其pH靈敏度為56.5 mV/pH,線性度為0.999。於可靠度之遲滯效應與時漂效應之探討方面,實驗結果顯示最佳化結構元件於緩衝溶液pH 7→4→7→10→7量測循環中之遲滯電壓為5.88 mV,於緩衝溶液pH 7量之時漂值為1.03 mV/h,顯示所製備元件具有良好之感測特性與可靠度穩定性。
    本論文所提以濕式蝕刻之矽角錐平台作為後續濺鍍法與水熱法製備NiO奈米片感測電極之pH感測器,可藉由角錐粗與奈米片所得之表面積增益有效改善元件之感測特性,亦具有製程成本低、簡易、製程時間短與大面積製備之優點,預期此元件於未來之pH感測器應用將極具潛力。

    In this work, the use of Si (100) substrate with pyramidal cones is proposed for the RF sputtering of nickel oxide (NiO) thin film and hydrothermal growth of NiO nanosheets (NSs) to improve the pH sensing performance for the first time. With an optimized KOH based etching process at 90°C for 40 min, a surface area gain of around 91% can be obtained from the etched Si substrate. NiO thin film sputtered and NiO NSs hydrothermally grown on the proposed Si substrate were used as pH sensing electrodes, respectively. The pH sensing performance of the NiO thin film on the proposed Si at 100 watt, 1.1×10-2 torr and 40 minutes exhibits a pH sensing response of 52.87 mV/pH. NiO thin film replaced by the NiO NSs offers more surface area, The pH sensors based on NiO NSs synthesized at 90°C for 7.5 h shows a near Nernstian response of 56.5 mV/pH in a pH range 2-12 buffer solutions and a near perfect linearity of 0.999. It is attributed to the dual surface roughening scheme considerably increases the sensing area and, in turn, increases the amount of surface sites for H+ sensing to promote the sensing performance.

    摘要 III 誌謝 XIII 目錄 XV 表目錄 XIX 圖目錄 XX 第一章、緒論 1 1-1、pH感測器應用與發展 1 1-2、表面粗化之矽基元件製備方法與應用 2 1-2-1、蝕刻技術 3 1-3、NiO感測材料特性與應用 4 1-3-1、葡萄糖感測器 7 1-3-2、紫外光感測器 8 1-3-3、pH感測器 10 1-4、NiO奈米結構之製備方法 11 1-4-1、水熱法 11 1-4-2、熱噴霧裂解法 15 1-4-3、陽極氧化鋁模板法與無電鍍鎳沉積法( Anodic Alumina Oxide Template ) 16 1-5、pH感測器現況與挑戰 18 1-6、研究動機 19 第二章、pH感測原理簡介與材料相關要求 21 2-1、離子感測場效電晶體 21 2-2、吸附鍵結模型 23 2-3、延伸式閘極場效電晶體 27 2-4、濕式蝕刻原理 30 2-5、表面積增益之估算法 37 第三章 以矽角錐為平台之NiO感測膜研製與材料分析 40 3-1、濕式蝕刻法製備表面粗化之矽角錐平台 40 3-1-1、蝕刻法蝕刻矽角錐之製備 40 3-1-2、矽角錐之外觀形貌 42 3-2 水熱法成長NiO奈米片製備於矽角錐平台 44 3-2-1、水熱法成長NiO奈米片之製備 45 3-2-2、NiO奈米片成長於矽角錐與薄膜之外觀形貌 48 3-3 射頻濺鍍沉積NiO薄膜製備於矽角錐平台 52 3-3-1、濺鍍法沉積NiO薄膜製備 52 3-3-2、NiO薄膜結構於矽角錐與薄膜之外觀形貌 55 3-4 矽結構之材料分析 56 3-4-1、濺鍍沉積SiO2薄膜於矽角錐之材料分析 57 3-5 NiO於矽基之材料分析 58 3-5-1、水熱成長之NiO奈米結構於矽角錐之材料分析 58 3-5-2、濺鍍沉積NiO薄膜於矽角錐之材料分析 66 第四章 以矽角錐為平台之pH感測元件研製及採用延伸式閘極架構之感測特性量測分析 68 4-1、延伸式閘極之製備 68 4-1-1、矽平面之延伸式閘極製備 68 4-1-2、矽角錐之延伸式閘極製備 71 4-2、pH量測之裝置與方法 74 4-2-1、pH量測裝置 74 4-2-2、pH量測方法 75 4-3、粗化矽角錐平台感測元件之研製 76 4-3-1、不同表面形貌矽角錐平台之感測特性分析 76 4-3-2、二氧化矽於矽角錐平台之感測特性探討 81 第五章 具雙重粗化奈米結構氧化鎳感測膜之pH感測特性分析 84 5-1、矽角錐平台上氧化鎳濺射薄膜感測特性之探討 84 5-2、矽角錐上氧化鎳奈米片感測特性之探討 89 5-3、退火溫度對矽角錐平台上氧化鎳奈米片感測特性影響分析 101 5-4、氧化鎳pH感測器遲滯特性之探討 106 5-5、氧化鎳pH感測器時漂特性之探討 109 第六章 結論及未來規劃建議 112 6-1、結論 112 6-2、未來規劃及建議 114 參考文獻 117

    [1] 維基百科,感測器,[Online]. Available: https://zh.wikipedia.org/wiki/ %E4%BC%A0%E6%84%9F%E5%99%A8.
    [2] M. Yuqing, C. Jianrong, and F. Keming, "New technology for the detection of pH," Journal of biochemical and biophysical methods, vol. 63, no. 1, pp. 1-9, 2005.
    [3] M. Futagawa, T. Iwasaki, H. Murata, M. Ishida, and K. Sawada, "A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture," Sensors, vol. 12, no. 6, pp. 8338-8354, 2012.
    [4] C. Toumazou et al., "Simultaneous DNA amplification and detection using a pH-sensing semiconductor system," Nature methods, vol. 10, no. 7, p. 641, 2013.
    [5] P. Jiang, H. Xia, Z. He, and Z. Wang, "Design of a water environment monitoring system based on wireless sensor networks," Sensors, vol. 9, no. 8, pp. 6411-6434, 2009.
    [6] K. E. Petersen, "Silicon as a mechanical material," Proceedings of the IEEE, vol. 70, no. 5, pp. 420-457, 1982.
    [7] T. Ghani et al., "A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors," in IEEE International Electron Devices Meeting 2003, 2003: IEEE, pp. 11.6. 1-11.6. 3.
    [8] W. Haensch et al., "Silicon CMOS devices beyond scaling," IBM Journal of Research and Development, vol. 50, no. 4.5, pp. 339-361, 2006.
    [9] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (Version 45)," Progress in photovoltaics: research and applications, vol. 23, no. 1, pp. 1-9, 2015.
    [10] K. Yoshikawa et al., "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, vol. 2, no. 5, p. 17032, 2017.
    [11] D. Adachi, J. L. Hernández, and K. Yamamoto, "Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency," Applied Physics Letters, vol. 107, no. 23, p. 233506, 2015.
    [12] G. Liu, M. Han, and W. Hou, "High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity," Optics express, vol. 23, no. 6, pp. 7237-7247, 2015.
    [13] A. Samusenko et al., "Integrated silicon photodetector for lab-on-chip sensor platform," in 2015 XVIII AISEM Annual Conference, 2015: IEEE, pp. 1-4.
    [14] S. C. Baker‐Finch and K. R. McIntosh, "Reflection of normally incident light from silicon solar cells with pyramidal texture," Progress in Photovoltaics: Research and Applications, vol. 19, no. 4, pp. 406-416, 2011.
    [15] Y. Jiang et al., "High efficiency multi-crystalline silicon solar cell with inverted pyramid nanostructure," Solar Energy, vol. 142, pp. 91-96, 2017.
    [16] X. Tan, W. Yan, Y. Tu, and C. Deng, "Small pyramidal textured ultrathin crystalline silicon solar cells with double-layer passivation," Optics express, vol. 25, no. 13, pp. 14725-14731, 2017.
    [17] R. R. Schaller, "Moore's law: past, present and future," IEEE spectrum, vol. 34, no. 6, pp. 52-59, 1997.
    [18] D. Zhuang and J. Edgar, "Wet etching of GaN, AlN, and SiC: a review," Materials Science and Engineering: R: Reports, vol. 48, no. 1, pp. 1-46, 2005.
    [19] 陳璟鋒, "P型氧化鎳薄膜之製備與其光性、電性及材料特性之研究," 碩士, 材料科學及工程學系碩博士班, 國立成功大學, 2004.
    [20] D. Adler and J. Feinleib, "Electrical and optical properties of narrow-band materials," Physical Review B, vol. 2, no. 8, p. 3112, 1970.
    [21] B. Sasi, K. Gopchandran, P. Manoj, P. Koshy, P. P. Rao, and V. Vaidyan, "Preparation of transparent and semiconducting NiO films," Vacuum, vol. 68, no. 2, pp. 149-154, 2002.
    [22] N. Ohshima, M. Nakada, and Y. Tsukamoto, "Structural and Magnetic Properties of Ni–O/Ni–Fe Bilayer Films," Japanese journal of applied physics, vol. 35, no. 12A, p. L1585, 1996.
    [23] S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, "Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study," Physical Review B, vol. 57, no. 3, p. 1505, 1998.
    [24] G. Wang et al., "Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors," Nanoscale, vol. 4, no. 10, pp. 3123-3127, 2012.
    [25] Y.-R. Li et al., "Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure," Vacuum, vol. 118, pp. 48-54, 2015.
    [26] F. Lin, H.-Y. Chang, S.-H. Hsiao, H.-I. Chen, and W.-C. Liu, "Preparation and characterization of nickel oxide-based EGFET pH sensors," in 2015 9th International Conference on Sensing Technology (ICST), 2015: IEEE, pp. 402-405.
    [27] L. A. Saghatforoush, M. Hasanzadeh, S. Sanati, and R. Mehdizadeh, "Ni (OH) 2 and NiO nanostructures: synthesis, characterization and electrochemical performance," Bulletin of the Korean Chemical Society, vol. 33, no. 8, pp. 2613-2618, 2012.
    [28] H. N. Tien and S. H. Hur, "A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process," Sensors and Actuators A: Physical, vol. 207, pp. 20-24, 2014.
    [29] 林昇輝, "奈米結構氧化鎳之電致色變特性研究," 博士, 工程與系統科學系, 國立清華大學, 2008.
    [30] C.-M. Liu, Y.-C. Tseng, C. Chen, M.-C. Hsu, T.-Y. Chao, and Y.-T. Cheng, "Superparamagnetic and ferromagnetic Ni nanorod arrays fabricated on Si substrates using electroless deposition," Nanotechnology, vol. 20, no. 41, p. 415703, 2009.
    [31] P. Van Thanh, H. H. Mai, N. V. Tuyen, S. C. Doanh, and N. C. Viet, "Zinc oxide nanorods grown on printed circuit board for extended-gate Field-effect transistor pH sensor," Journal of Electronic Materials, vol. 46, no. 6, pp. 3732-3737, 2017.
    [32] J.-L. Wang, P.-Y. Yang, T.-Y. Hsieh, and P.-C. Juan, "Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures," Japanese Journal of Applied Physics, vol. 55, no. 1S, p. 01AE16, 2015.
    [33] Y.-H. Liao and J.-C. Chou, "Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method," Materials Chemistry and Physics, vol. 114, no. 2-3, pp. 542-548, 2009.
    [34] J.-Y. Li, S.-P. Chang, S.-J. Chang, and T.-Y. Tsai, "Sensitivity of EGFET pH sensors with TiO2 nanowires," ECS Solid State Letters, vol. 3, no. 10, pp. P123-P126, 2014.
    [35] R. d. C. Campos, D. T. Cestarolli, M. Mulato, and E. M. Guerra, "Comparative sensibility study of WO3 pH sensor using EGFET and ciclic voltammetry," Materials Research, vol. 18, no. 1, pp. 15-19, 2015.
    [36] L. Manjakkal, B. Sakthivel, N. Gopalakrishnan, and R. Dahiya, "Printed flexible electrochemical pH sensors based on CuO nanorods," Sensors and Actuators B: Chemical, vol. 263, pp. 50-58, 2018.
    [37] H.-H. Li et al., "Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor," Thin Solid Films, vol. 529, pp. 173-176, 2013.
    [38] J.-C. Lin, B.-R. Huang, and Y.-K. Yang, "IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors," Sensors and Actuators B: Chemical, vol. 184, pp. 27-32, 2013.
    [39] N. M. Ahmed, E. Kabaa, M. Jaafar, and A. Omar, "Characteristics of extended-gate field-effect transistor (EGFET) based on porous n-type (111) silicon for use in pH sensors," Journal of electronic Materials, vol. 46, no. 10, pp. 5804-5813, 2017.
    [40] N. Abd-Alghafour, N. M. Ahmed, Z. Hassan, M. A. Almessiere, M. Bououdina, and N. H. Al-Hardan, "High sensitivity extended gate effect transistor based on V 2 O 5 nanorods," Journal of Materials Science: Materials in Electronics, vol. 28, no. 2, pp. 1364-1369, 2017.
    [41] P. Batista, M. Mulato, C. d. O. Graeff, F. Fernandez, and F. d. C. Marques, "SnO2 extended gate field-effect transistor as pH sensor," Brazilian Journal of Physics, vol. 36, no. 2A, pp. 478-481, 2006.
    [42] L.-L. Chi, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Study on extended gate field effect transistor with tin oxide sensing membrane," Materials Chemistry and Physics, vol. 63, no. 1, pp. 19-23, 2000.
    [43] Y. Lu et al., "Curly porous NiO nanosheets with enhanced gas-sensing properties," Materials Letters, vol. 190, pp. 252-255, 2017.
    [44] J. Zhao et al., "A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment," Applied Surface Science, vol. 337, pp. 111-117, 2015.
    [45] H. Wang, J. Du, Q. Zhen, R. Zhang, X. Wang, and X. Du, "Selective solid-phase microextraction of ultraviolet filters in environmental water with oriented ZnO nanosheets coated nickel-titanium alloy fibers followed by high performance liquid chromatography with UV detection," Talanta, vol. 191, pp. 193-201, 2019.
    [46] W. Tan, J. Tan, L. Fan, Z. Yu, J. Qian, and X. Huang, "Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor," Sensors and Actuators B: Chemical, vol. 256, pp. 282-293, 2018.
    [47] Y. Zhang, "Study of Schottky contact between Au and NiO nanowire by conductive atomic force microscopy (C-AFM): The case of surface states," Physica E: Low-dimensional Systems and Nanostructures, vol. 69, pp. 109-114, 2015.
    [48] H. Ren, G. Xiang, J. Luo, D. Yang, and X. Zhang, "Direct catalyst-free self-assembly of large area of horizontal ferromagnetic ZnO nanowire arrays," Materials Letters, vol. 234, pp. 384-387, 2019.
    [49] P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," IEEE Transactions on Biomedical Engineering, no. 1, pp. 70-71, 1970.
    [50] C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor," IEEE Transactions on Electron Devices, vol. 33, no. 1, pp. 8-18, 1986.
    [51] P. Bergveld, "ISFET, theory and practice," in IEEE Sensor Conference, Toronto, 2003, vol. 328.
    [52] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974.
    [53] R. Hunter and H. Wright, "The dependence of electrokinetic potential on concentration of electrolyte," Journal of Colloid and Interface Science, vol. 37, no. 3, pp. 564-580, 1971.
    [54] H.-K. Liao, L.-L. Chi, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Study on pHpzc and surface potential of tin oxide gate ISFET," Materials chemistry and physics, vol. 59, no. 1, pp. 6-11, 1999.
    [55] I. Lauks, P. Chan, and D. Babic, "The extended gate chemically sensitive field effect transistor as multi-species microprobe," Sensors and Actuators, vol. 4, pp. 291-298, 1983.
    [56] J. R. Siqueira, E. G. R. Fernandes, O. N. de Oliveira, and V. Zucolotto, "Biosensors Based on Field-Effect Devices," in Nanobioelectrochemistry: Springer, 2013, pp. 67-86.
    [57] J.-L. C. J.-C. Chou and Y.-C. Chen, "Study of the pH-ISFET and EnFET for biosensor applications," Journal of Medical and Biological Engineering, vol. 21, no. 3, pp. 135-146, 2001.
    [58] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Study of indium tin oxide thin film for separative extended gate ISFET," Materials Chemistry and Physics, vol. 70, no. 1, pp. 12-16, 2001.
    [59] J.-C. Chou and C.-W. Chen, "Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs," IEEE Sensors Journal, vol. 9, no. 3, pp. 277-284, 2009.
    [60] P. D. Batista and M. Mulato, "Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor," Journal of Materials Science, vol. 45, no. 20, pp. 5478-5481, 2010.
    [61] B. D. Cullity, Element of X-ray Diffraction. Addison-Wesley, 1978.
    [62] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
    [63] S. M. Sze and G. Y. Chang, ULSI Technology. McGraw-Hill, 1996.
    [64] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, "Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers," Journal of the electrochemical society, vol. 137, no. 11, pp. 3612-3626, 1990.
    [65] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, "Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants," Journal of the Electrochemical Society, vol. 137, no. 11, pp. 3626-3632, 1990.
    [66] M. J. Madou, Fundamentals of microfabrication: the science of miniaturization. CRC press, 2002.
    [67] K. E. Bean, "Anisotropic etching of silicon," IEEE Transactions on electron devices, vol. 25, no. 10, pp. 1185-1193, 1978.
    [68] I. Zubel and M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions," Sensors and Actuators A: Physical, vol. 93, no. 2, pp. 138-147, 2001.
    [69] D. Muñoz et al., "Optimization of KOH etching process to obtain textured substrates suitable for heterojunction solar cells fabricated by HWCVD," Thin Solid Films, vol. 517, no. 12, pp. 3578-3580, 2009.
    [70] I. Zubel, "The influence of atomic configuration of (hkl) planes on adsorption processes associated with anisotropic etching of silicon," Sensors and Actuators A: Physical, vol. 94, no. 1-2, pp. 76-86, 2001.
    [71] T. Yu et al., "Highly sensitive H 2 S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays," Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11991-11999, 2015.
    [72] W. Sparber et al., "Comparison of texturing methods for monocrystalline silicon solar cells using KOH and Na/sub 2/CO/sub 3," in 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of, 2003, vol. 2: IEEE, pp. 1372-1375.
    [73] E. Vazsonyi et al., "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar energy materials and solar cells, vol. 57, no. 2, pp. 179-188, 1999.
    [74] J. H. Kim and J. Y. Lee, "Al-induced crystallization of an amorphous Si thin film in a polycrystalline Al/native SiO2/amorphous Si structure," Japanese journal of applied physics, vol. 35, no. 4R, p. 2052, 1996.
    [75] A. Lubig, C. Buchal, D. Guggi, C. Jia, and B. Stritzker, "Epitaxial growth of monoclinic and cubic ZrO2 on Si (100) without prior removal of the native SiO2," Thin Solid Films, vol. 217, no. 1-2, pp. 125-128, 1992.
    [76] S. V. Mattigod, D. Rai, A. R. Felmy, and L. Rao, "Solubility and solubility product of crystalline Ni (OH) 2," Journal of solution Chemistry, vol. 26, no. 4, pp. 391-403, 1997.
    [77] V. P. Patil et al., "Effect of annealing on structural, morphological, electrical and optical studies of nickel oxide thin films," Journal of Surface Engineered Materials and Advanced Technology, vol. 1, no. 02, p. 35, 2011.
    [78] J.-C. Chou et al., "Characterization of flexible arrayed pH sensor based on nickel oxide films," IEEE Sensors Journal, vol. 18, no. 2, pp. 605-612, 2017.
    [79] D. Abubakar, N. M. Ahmed, and S. Mahmud, "The Study on the Effect of Wet and Dry Oxidation of Nickel Thin Film on Sensitivity of EGFET Based pH Sensor," in Solid State Phenomena, 2019, vol. 290: Trans Tech Publ, pp. 199-207.
    [80] M. Zulkefle, R. Rahman, K. Yusoff, W. F. H. Abdullah, M. Rusop, and S. H. Herman, "Influence of annealing time on pH sensitivity of ZnO sensing membrane for EGFET sensor," in AIP Conference Proceedings, 2018, vol. 1963, no. 1: AIP Publishing, p. 020063.
    [81] C.-C. Yang, K.-Y. Chen, and Y.-K. Su, "TiO2 Nano Flowers Based EGFET Sensor for pH Sensing," Coatings, vol. 9, no. 4, p. 251, 2019.
    [82] Y.-S. Chien, W.-L. Tsai, I.-C. Lee, J.-C. Chou, and H.-C. Cheng, "A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network," IEEE Electron Device Letters, vol. 33, no. 11, pp. 1622-1624, 2012.
    [83] J. C. Chou and Y. F. Wang, "Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method," Sensors and Actuators B: Chemical, vol. 86, no. 1, pp. 58-62, 2002.
    [84] C.-E. Lue et al., "pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process," Microelectronics Reliability, vol. 52, no. 8, pp. 1651-1654, 2012.
    [85] R. Rahman, M. Zulkefle, K. Yusof, W. F. H. Abdullah, M. Rusop, and S. H. Herman, "Layer configurations comparison of bilayer-films for EGFET pH sensor application," in AIP Conference Proceedings, 2018, vol. 1963, no. 1: AIP Publishing, p. 020064.
    [86] K. Singh, J.-L. Her, B.-S. Lou, S.-T. Pang, and T.-M. Pan, "An Extended-Gate FET-Based pH Sensor With an InZn x O y Membrane Fabricated on a Flexible Polyimide Substrate at Room Temperature," IEEE Electron Device Letters, vol. 40, no. 5, pp. 804-807, 2019.
    [87] A. Rosli, S. Shariffudin, Z. Awang, and S. Herman, "Deposition temperature dependence of ZnO nanostructures growth using TCVD for EGFET pH sensor," in 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 2017: IEEE, pp. 175-178.
    [88] W.-L. Tsai, B.-T. Huang, K.-Y. Wang, Y.-C. Huang, P.-Y. Yang, and H.-C. Cheng, "Functionalized carbon nanotube thin films as the pH sensing membranes of extended-gate field-effect transistors on the flexible substrates," IEEE Transactions on Nanotechnology, vol. 13, no. 4, pp. 760-766, 2014.
    [89] Y.-H. Liao and J.-C. Chou, "Fabrication and characterization of a ruthenium nitride membrane for electrochemical pH sensors," Sensors, vol. 9, no. 4, pp. 2478-2490, 2009.
    [90] N. C. Vieira, E. G. Fernandes, A. D. Faceto, V. Zucolotto, and F. E. Guimarães, "Nanostructured polyaniline thin films as pH sensing membranes in FET-based devices," Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 312-317, 2011.
    [91] K. A. Yusof, R. Abdul Rahman, M. A. Zulkefle, S. H. Herman, and W. F. H. Abdullah, "EGFET pH sensor performance dependence on sputtered TiO2 sensing membrane deposition temperature," Journal of Sensors, vol. 2016, 2016.
    [92] K. Yusof, S. H. Herman, and W. F. H. Abdullah, "TiO 2-based extended gate FET pH-sensor: Effect of annealing temperature on its sensitivity, hysteresis and stability," in 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014), 2014: IEEE, pp. 491-494.
    [93] H.-H. Li, W.-S. Dai, J.-C. Chou, and H.-C. Cheng, "An Extended-Gate Field-Effect Transistor With Low-Temperature Hydrothermally Synthesized $hbox {SnO} _ {2} $ Nanorods as pH Sensor," IEEE Electron Device Letters, vol. 33, no. 10, pp. 1495-1497, 2012.
    [94] L. Bousse, S. Mostarshed, B. van der Schoot, and N. De Rooij, "Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators," Sensors and Actuators B: Chemical, vol. 17, no. 2, pp. 157-164, 1994.

    下載圖示 校內:2024-08-14公開
    校外:2024-08-14公開
    QR CODE