| 研究生: |
李定洋 Li, Ting-yang |
|---|---|
| 論文名稱: |
周腦室白質軟化症引發腦性麻痺之早產兒與其體內細胞激素/趨化激素含量的研究探討 Increased cytokines/chemokines expression in preterm infants with periventricular leukomalacia-related cerebral palsy |
| 指導教授: |
黃朝慶
Huang, Chao-ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 早產兒 、腦性麻痺 、細胞激素 、周腦室白質軟化症 |
| 外文關鍵詞: | CP, PVL, PVL-related CP, preterm, cytokine |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腦周腦室白質軟化症是一種好發於早產兒的神經性疾病,主要由大腦白質和寡突觸膠前驅細胞受損所引起的腦傷,導致引發雙下肢腦性麻痺。周腦室白質軟化症患者腦中常可發現大量活化的微神經膠細胞,他們能夠釋放大量的發炎細胞激素(像是甲型腫瘤壞死因子)而去毒殺寡突觸膠前驅細胞。這些藉由感染或是缺氧而產生的發炎細胞激素最後都能夠造成周腦室白質軟化症,然而研究中發現大概只有10%早產兒會得到周腦室白質軟化症所引起的腦性麻痺,由此可知周腦室白質軟化症的易受性為何到目前為止仍未釐清。
在我的研究中將從生化易受性及基因易受性兩點切入:在生化易受性方面,探討正常早產兒小孩及周腦室白質軟化症所引起的早產兒腦性麻痺小孩中,是否在體內存在著甲型腫瘤壞死因子及其第一型受體的表現量差異,並且觀察這兩組小孩子體內負責免疫功能的細胞,在遭受到發炎攻擊的情況下,其免疫反應是否有所不同;而在基因易受性方面,則是藉由單核酸多行性研究在正常及得病這兩組早產兒小孩,在甲型腫瘤壞死因子及其第一型受體基因的單核酸多行性是否有差異。
我們收集了29位正常早產兒小孩及28位由核磁共振證實的確罹患周腦室白質軟化症引起腦性麻痺的早產兒小孩,這兩組小孩不論是在懷孕周數或是出生體重均無差異。我們發現,相較於正常早產兒小孩組(mean ± SEM, 9.7 ± 3.5 pg/ml),周腦室白質軟化症所引起腦性麻痺組的小孩在體內血液循環中有較高量(60.8 ± 17.3 pg/ml)的甲型腫瘤壞死因子(P<0.01);而游離的腫瘤壞死因子第一型受體含量,在這兩組中並沒有統計上的差異。為了研究除了甲型腫瘤壞死因子外,是否仍有其它細胞激素及趨化激素在這兩組小孩中的表現量是存在著差異,我們利用蛋白質微陣列式晶片來進行分析,結果發現除了甲型腫瘤壞死因子外,還有十九種不同的細胞激素及趨化激素在得到周腦室白質軟化症小孩血液中的表現量是比較高的。
接下來為了研究正常早產兒小孩和罹患周腦室白質軟化症引起腦性麻痺的早產兒小孩其體內負責免疫功能的細胞,在遭受到發炎攻擊的情況下,免疫反應是否有所不同(生化易受性),我們利用由全血中分離出周邊血單核球細胞並且搭配體外刺激脂多醣體的方式,想要觀察控制組及實驗組的免疫反應,結果發現在處理脂多醣體後,相較於正常早產兒小孩組(mean ± SEM, 963.2 ± 133.5 pg/ml),周腦室白質軟化症所引起腦性麻痺組的小孩會釋放較高量(1612 ± 263.9 pg/ml)的甲型腫瘤壞死因子(P<0.05),而在釋放游離的腫瘤壞死因子第一型受體含量方面,不論是在脂多醣體刺激前後,在這兩組中並沒有統計上的差異。另外我們也發現周腦室白質軟化症所引起腦性麻痺組的小孩在周邊血單核球細胞處理脂多醣體後,細胞內的甲型腫瘤壞死因子含量明顯增多(P<0.05),而正常組的小孩反而有減少的趨勢(P<0.05)。
從過去研究中已經發現,在基因內的單核酸多行性將會影響到基因的訊息核醣核酸及蛋白質的表現(基因易受性)。我們實驗室在先前的單核酸多行性研究中已發現甲型腫瘤壞死因子基因上的-1031 C/T和該疾病的發生率有關聯。因此我們檢視87位正常早產兒小孩和40位周腦室白質軟化症所引起腦性麻痺組的小孩,這兩組小孩之間腫瘤壞死因子第一型受體基因內的單核酸多行性,包含rs4149573(C/G)、rs4149576(A/G)、rs4149577(C/T)、rs4149579(A/G)、和 rs4149584(A/G),結果顯示不論是在周腦室白質軟化症的嚴重度或是發生率,都和這些單核酸多行性的點無直接的相關性。
總結我們的研究成果,我們發現得到周腦室白質軟化症引起腦性麻痺的早產兒小孩,在血液中除了甲型腫瘤壞死因子外,還有十九種不同的細胞激素及趨化激素的表現量是比較高的,並且在面對發炎感染時,是能夠引起較強烈的免疫反應。我們認為此實驗結果在研究早產兒周腦室白質軟化症的易受性方面,可提供新的切入觀點。
Periventricular leukomalacia (PVL), a form of cerebral white matter damage and pre-oligodendrocyte (pre-OL) injury, is the most common neuropathological lesion that underlies most of the neurological sequelae in preterm infants who develop diplegic cerebral palsy (CP). PVL is characterized by the marked presence of activated microglia that is fully capable of producing toxic pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-a), which have the potential to induce pre-OL cell death. These cytokines may form a “final common pathway” leading to PVL whether triggered by infection or hypoxia. Despite the developmental vulnerability, only about 10% of preterm infants develop PVL-related CP. Therefore, the susceptibility to PVL in preterm infants remains unclear.
Here, we investigated biochemical and genetic susceptibility of PVL in children with premature birth and explored whether there are differences in immune responses of TNF-a/TNF receptor-1 (TNFR1) expression and in TNFA and TNFRSF1A genetic polymorphism between the preterm with PVL-related CP and the preterm with normal development.
There were 29 normal preterm children and 28 preterm children with PVL-related CP, both diagnosed by neurodevelopmental and magnetic resonance imaging examination. There was no significant difference in the gestation age and birthweight between the two groups. The plasma levels of sTNF-a,but not sTNFR1, in the preterm CP group (mean ± SEM, 60.8 ± 17.3 pg/ml) were significantly (P<0.01) higher than those in the normal preterm group (9.7 ± 3.5 pg/ml). In addition, cytokines/chemokines antibody array showed 19 other cytokines/chemokines, such as CXCR2 ligands (IL-8, ENA-78, GRO-a, GRO), CCR3 ligands (MCP-1, MCP-2, MCP-3, RANTES, Eotaxin-2), CCR4 ligand (MDC), growth factors (PDGF-BB, Angiogenin, VEGF, EGF, IGF-1), and others (IL-6sR, Oncostatin M, Leptin, IL-4), were also significantly increased in CP preterm group than in normal preterm group.
Using an in-vitro model of lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs), we found that the CP preterm group (mean ± SEM, 1612 ± 263.9 pg/ml) had significantly (P<0.05) higher levels of sTNF-a but not sTNFR1 in the supernatants of cultured PBMCs after LPS stimulation compared with the normal preterm group (963.2 ± 133.5 pg/ml). Furthermore, flow cytometry showed that after LPS stimulation the PBMCs from preterm CP patients contained significantly (P<0.05) higher intracellular TNF-a levels, in contrast, those from the normal preterm had decreased intracellular TNF-a levels.
Our previous study found that TNFA-1031 was associated with the severity of PVL-related CP in preterm infants. Here, we compared TNFRSF1A SNPs, including rs4149573 (C/G), rs4149576 (A/G), rs4149577 (C/T), rs4149579 (A/G), and rs4149584 (A/G), between 40 CP preterm and 87 normal preterm children. The result showed that there was no significant difference in the SNPs polymorphism measured in the TNFRSF1A among the two groups.
In conclusion, the findings that CP preterm children had increased LPS sensitivity in their PBMCs compared with normal preterm children might underlie the biochemical susceptibility to PVL in preterm infants.
Achiron A, M. Gurevich M. Peripheral blood gene expression signature mirrors central nervous system disease: The model of multiple sclerosis. Autoimmunity Reviews 2006;5:517–522
Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis. 2006;19:290-297
Ando M, Takashima S, Mito T. Endotoxin, cerebral blood flow, amino acids and brain damage in young rabbits. Brain Dev. 1988;10:365-370
Back SA, Volpe JJ. Cellular and molecular pathogenesis of periventricular white matter injury. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS. 1997;3:96-107
Back SA, Riddle A, McClure MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke. 2007;38:724-730
Back SA, Rivkees SA. Emerging concepts in periventricular white matter injury. Semin Perinatol. 2004;28:405-414
Ben-Hur T, Ben-Menachem O, Furer V et al. Effects of pro-inflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci. 2003;24:623-631
Black RA, Rauch CT, Kozlosky CJ et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385:729-733
Blumenthal I. Periventricular leucomalacia: a review. Eur J Pediatr. 2004;163:435-442
Boulanger LM, Huh GS, Shatz CJ. Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr Opin Neurobiol. 2001;11:568-578
Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke. 2007;38:1097-1103
Dammann O. Persistent neuro-inflammation in cerebral palsy: a therapeutic window of opportunity? Acta Paediatr. 2007;96:6-7
Dammann O, Durum S, Leviton A. Do white cells matter in white matter damage? Trends Neurosci. 2001;24:320-324
Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997;42:1-8
Dammann O, Leviton A. Biomarker epidemiology of cerebral palsy. Ann Neurol. 2004;55:158-161
Dammann O, Phillips TM, Allred EN et al. Mediators of fetal inflammation in extremely low gestational age newborns. Cytokine. 2001;13:234-239
de Boer AG, Breimer DD. Cytokines and blood-brain barrier permeability. Prog Brain Res. 1998;115:425-451
Dedoussis GV, Panagiotakos DB, Vidra NV et al. Association between TNF-alpha -308G>A polymorphism and the development of acute coronary syndromes in Greek subjects: the CARDIO2000-GENE Study. Genet Med. 2005;7:411-416
Deguchi K, Oguchi K, Takashima S. Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr Neurol. 1997;16:296-300
Downen M, Amaral TD, Hua LL et al. Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-alpha. Glia. 1999;28:114-127
Drouin LM, Malouin F, Richards CL, Marcoux S. Correlation between the gross motor function measure scores and gait spatiotemporal measures in children with neurological impairments. Dev Med Child Neurol. 1996;38:1007-1019
Duggan PJ, Maalouf EF, Watts TL et al. Intrauterine T-cell activation and increased pro-inflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet. 2001;358:1699-1700
Eklind S, Mallard C, Leverin AL et al. Bacterial endotoxin sensitizes the immature brain to hypoxic--ischaemic injury. Eur J Neurosci. 2001;13:1101-1106
Ellison VJ, Mocatta TJ, Winterbourn CC et al. The relationship of CSF and plasma cytokine levels to cerebral white matter injury in the premature newborn. Pediatr Res. 2005;57:282-286
Elmas E, Holzer L, Lang S et al. Enhanced pro-inflammatory response of mononuclear cells to in vitro LPS-challenge in patients with ventricular fibrillation in the setting of acute myocardial infarction. Cytokine. 2008
Feldhaus B, Dietzel ID, Heumann R, Berger R. Effects of interferon-gamma and tumor necrosis factor-alpha on survival and differentiation of oligodendrocyte progenitors. J Soc Gynecol Investig. 2004;11:89-96
Gaudet LM, Smith GN. Cerebral palsy and chorioamnionitis: the inflammatory cytokine link. Obstet Gynecol Surv. 2001;56:433-436
Golden JA, Gilles FH, Rudelli R, Leviton A. Frequency of neuropathological abnormalities in very low birth weight infants. J Neuropathol Exp Neurol. 1997;56:472-478
Hack M, Taylor HG, Klein N, Mercuri-Minich N. Functional limitations and special health care needs of 10- to 14-year-old children weighing less than 750 grams at birth. Pediatrics. 2000;106:554-560
Hack M, Wilson-Costello D, Friedman H et al. Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992-1995. Arch Pediatr Adolesc Med. 2000;154:725-731
Hagberg H, Mallard C. Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol. 2005;18:117-123
Hedberg CL, Adcock K, Martin J et al. Tumor necrosis factor alpha -308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. Pediatr Infect Dis J. 2004;23:424-428
Hickey WF. Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol. 1999;11:125-137
Ikonen RS, Kuusinen EJ, Janas MO et al. Possible etiological factors in extensive periventricular leukomalacia of preterm infants. Acta Paediatr Scand. 1988;77:489-495
Inage YW, Itoh M, Takashima S. Correlation between cerebrovascular maturity and periventricular leukomalacia. Pediatr Neurol. 2000;22:204-208
Inder TE, Volpe JJ. Mechanisms of perinatal brain injury. Semin Neonatol. 2000;5:3-16
Jacob CO, Fronek Z, Lewis GD et al. Heritable major histocompatibility complex class II-associated differences in production of tumor necrosis factor alpha: relevance to genetic predisposition to systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1990;87:1233-1237
Jyonouchi H, Sun S, Le H. Pro-inflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol. 2001;120:170-179
Kadhim H, Khalifa M, Deltenre P et al. Molecular mechanisms of cell death in periventricular leukomalacia. Neurology. 2006;67:293-299
Kadhim H, Tabarki B, Verellen G et al. Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology. 2001;56:1278-1284
Kaukola T, Satyaraj E, Patel DD et al. Cerebral palsy is characterized by protein mediators in cord serum. Ann Neurol. 2004;55:186-194
Keelan JA, Yang J, Romero RJ et al. Epithelial cell-derived neutrophil-activating peptide-78 is present in fetal membranes and amniotic fluid at increased concentrations with intra-amniotic infection and preterm delivery. Biol Reprod. 2004;70:253-259
Kelley RE. Ischemic demyelination. Neurol Res. 2006;28:334-340
Kowalski ML, Wolska A, Grzegorczyk J et al. Increased responsiveness to toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm. 2008;2008:132732
Lawson LJ, Perry VH. The unique characteristics of inflammatory responses in mouse brain are acquired during postnatal development. Eur J Neurosci. 1995;7:1584-1595
Levine A, Karban A, Eliakim R et al. A polymorphism in the TNF-alpha promoter gene is associated with pediatric onset and colonic location of Crohn's disease. Am J Gastroenterol. 2005;100:407-413
Leviton A, Dammann O, Durum SK. The adaptive immune response in neonatal cerebral white matter damage. Ann Neurol. 2005;58:821-828
Leviton A, Gilles F. Ventriculomegaly, delayed myelination, white matter hypoplasia, and "periventricular" leukomalacia: how are they related? Pediatr Neurol. 1996;15:127-136
Levy-Marchal C, Czernichow P. Small for gestational age and the metabolic syndrome: which mechanism is suggested by epidemiological and clinical studies? Horm Res. 2006;65 Suppl 3:123-130
Lipton JM, Catania A, Delgado R. Peptide modulation of inflammatory processes within the brain. Neuroimmunomodulation. 1998;5:178-183
MacEwan DJ. TNF ligands and receptors--a matter of life and death. Br J Pharmacol. 2002;135:855-875
Maes OC, Xu S, Yu B et al. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging. 2007;28:1795-1809
Mak JC, Ko FW, Chu CM et al. Polymorphisms in the IL-4, IL-4 receptor alpha chain, TNF-alpha, and lymphotoxin-alpha genes and risk of asthma in Hong Kong Chinese adults. Int Arch Allergy Immunol. 2007;144:114-122
Martinez E, Figueroa R, Garry D et al. Elevated Amniotic Fluid Interleukin-6 as a Predictor of Neonatal Periventricular Leukomalacia and Intraventricular Hemorrhage. J Matern Fetal Investig. 1998;8:101-107
Miller SP, Shevell MI, Patenaude Y, O'Gorman AM. Neuromotor spectrum of periventricular leukomalacia in children born at term. Pediatr Neurol. 2000;23:155-159
Minagawa K, Tsuji Y, Ueda H et al. Possible correlation between high levels of IL-18 in the cord blood of pre-term infants and neonatal development of periventricular leukomalacia and cerebral palsy. Cytokine. 2002;17:164-170
Moore DF, Li H, Jeffries N et al. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation. 2005;111:212-221
Murphy BP, Inder TE, Huppi PS et al. Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics. 2001;107:217-221
Murphy DJ, Squier MV, Hope PL et al. Clinical associations and time of onset of cerebral white matter damage in very preterm babies. Arch Dis Child Fetal Neonatal Ed. 1996;75:F27-32
Nelson KB. Can we prevent cerebral palsy? N Engl J Med. 2003;349:1765-1769
Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol. 1998;44:665-675
Nelson KB, Grether JK, Dambrosia JM et al. Neonatal cytokines and cerebral palsy in very preterm infants. Pediatr Res. 2003;53:600-607
Nelson KB, Willoughby RE. Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol. 2000;13:133-139
Nussler AK, Wittel UA, Nussler NC, Beger HG. Leukocytes, the Janus cells in inflammatory disease. Langenbecks Arch Surg. 1999;384:222-232
Perlman JM. White matter injury in the preterm infant: an important determination of abnormal neurodevelopment outcome. Early Hum Dev. 1998;53:99-120
Pleasure D, Soulika A, Singh SK et al. Inflammation in white matter: clinical and pathophysiological aspects. Ment Retard Dev Disabil Res Rev. 2006;12:141-146
Resch B, Vollaard E, Maurer U et al. Risk factors and determinants of neurodevelopmental outcome in cystic periventricular leucomalacia. Eur J Pediatr. 2000;159:663-670
Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology. 2002;22:106-132
Rosenzweig HL, Minami M, Lessov NS et al. Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab. 2007;27:1663-1674
Saliba E, Marret S. Cerebral white matter damage in the preterm infant: pathophysiology and risk factors. Semin Neonatol. 2001;6:121-133
Samuels MA. Inflammation and neurological disease. Curr Opin Neurol. 2004;17:307-309
Sandhu SK, Bhardwaj SK, Sharma P, Kaur G. Alterations in signal transduction cascade in young and adult rat brain and lymphocytes. Brain Res Bull. 2001;54:513-520
Shah DK, Doyle LW, Anderson PJ, Bear M, Daley AJ, Hunt RW, Inder TE. Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term. J Pediatr 2008;153:170-175
Sriram K, O'Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol. 2007;2:140-153
Steel JH, O'Donoghue K, Kennea NL et al. Maternal origin of inflammatory leukocytes in preterm fetal membranes, shown by fluorescence in situ hybridisation. Placenta. 2005;26:672-677
Stojanov S, McDermott MF. The tumour necrosis factor receptor-associated periodic syndrome: current concepts. Expert Rev Mol Med. 2005;7:1-18
Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol. 1999;58:233-247
Sutherland JP, McKinley B, Eckel RH. The metabolic syndrome and inflammation. Metab Syndr Relat Disord. 2004;2:82-104
Phillips DI, Jones A, Goulden PA. Birth weight, stress, and the metabolic syndrome in adult life. Ann N Y Acad Sci. 2006;1083:28-36
Tsukimori K, Komatsu H, Yoshimura T et al. Increased inflammatory markers are associated with early periventricular leukomalacia. Dev Med Child Neurol. 2007;49:587-590
Tzogalis D, Fawer CL, Wong Y, Calame A. Risk factors associated with the development of peri-intraventricular haemorrhage and periventricular leukomalacia. Helv Paediatr Acta. 1989;43:363-376
Vandenbroeck K, Goris A. Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy? Trends Pharmacol Sci. 2003;24:284-289
Vigneswaran R. Infection and preterm birth: evidence of a common causal relationship with bronchopulmonary dysplasia and cerebral palsy. J Paediatr Child Health. 2000;36:293-296
Viola A, Luster AD. Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol. 2008;48:171-197
Volpe JJ. Brain injury in the premature infant--from pathogenesis to prevention. Brain Dev. 1997;19:519-534
Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res. 2001;50:553-562
Volpe JJ. Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants. J Pediatr 2008;153:160-163
Wang L, Chen RF, Liu JW et al. Implications of dynamic changes among tumor necrosis factor-alpha (TNF-alpha), membrane TNF receptor, and soluble TNF receptor levels in regard to the severity of dengue infection. Am J Trop Med Hyg. 2007;77:297-302
Wang LW, Wang ST, Huang CC. Validity of the Clinical Adaptive Test (CAT)/Clinical Linguistic and Auditory Milestone Scale (CLAMS) as a screening instrument for very low birth weight infants in Taiwan. J Dev Behav Pediatr. 2005;26:412-418
Wood NS, Marlow N, Costeloe K et al. Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med. 2000;343:378-384
Woodward LJ, Anderson PJ, Austin NC et al. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med. 2006;355:685-694
Wu YW. Systematic review of chorioamnionitis and cerebral palsy. Ment Retard Dev Disabil Res Rev. 2002;8:25-29
Yang L, Lindholm K, Konishi Y et al. Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci. 2002;22:3025-3032
Yeh TF, Lin YJ, Lin HC et al. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N Engl J Med. 2004;350:1304-1313
Yoon BH, Jun JK, Romero R et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997;177:19-26
Yoon BH, Romero R, Park JS et al. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000;182:675-681
Yrjanheikki J, Tikka T, Keinanen R et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A. 1999;96:13496-13500