簡易檢索 / 詳目顯示

研究生: 謝佳伶
Hsieh, Chia-Ling
論文名稱: 車削製程中製造參數對功率與能耗影響之研究
Parameter Study of Power and Energy Consumption in Turning Process
指導教授: 鍾俊輝
Chung, Chun-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 104
中文關鍵詞: 車削參數最佳化永續製造功率與能量消耗粒子群最佳化演算法
外文關鍵詞: turning operation, cutting power, energy consumption, sustainable manufacturing parameter optimization
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球對可持續發展的重視日益提升,製造業作為能源消耗的主要產業之一,正面臨減碳與提升能源效率的雙重挑戰。降低製造過程中的能源消耗,不僅有助於企業提升競爭力,也成為因應環境壓力的重要對策。本研究不同於過往僅針對單道次加工或固定參數分析之研究,著重於多道次車削過程中工件負載隨尺寸變化而產生之能耗差異,並強調動態調整加工參數對節能的潛在貢獻。以CNC機台車削中碳鋼,探討不同加工參數對功率與能量消耗之影響,目標為降低能源使用。實驗採用L9直交表進行,將切削速度、進給率、切削深度與刀具磨耗做為控制因子,並將刀具磨耗更作為初始參數進行考量。根據實驗數據建立功率模型,擬合功率與各切削參數間之關係,利用粒子群最佳化演算法(Particle Swarm Optimization, PSO)對所得能耗進行最佳化,尋找最小能量消耗之參數組合。有別於過去研究於多道次加工中採固定參數組合之作法,本文依據每道次加工實際負載條件,設計不同參數組合,反映工件直徑逐步縮小對切削負載與能源需求的變化。在恆定切削速度下,隨工件直徑減少,主軸轉速上升,導致功率呈遞增趨勢。因此,應重視轉速變化對機台負載與能耗之影響,此外由L9直交表進行實驗設計所得之最佳參數組合分析結果可得,進給率與切削深度採用較高水準,因高進給與大切深可有效縮短加工時間,進而減少總能量消耗。儘管瞬時功率有所提升,但加工時間顯著縮短使得總能耗下降。根據本研究的方法,能源預估的百分比誤差皆在 1% 以內,顯示所建立之功率模型具備高度準確性。外徑車削中,Case3與Case1所得之最佳參數組合相比,能耗降低 2.53 %加工時間縮短 2.6 分鐘,與 Case2相比,能耗降低 1.23 %縮短加工時間 1.3 分鐘。輪廓車削中,Case3與Case1所得之最佳參數組合相比,能耗降低 4.33%加工時間縮短 4.8 分鐘,與 Case2相比,能耗降低 3.27 %縮短加工時間 0.9 分鐘。

    The purpose of this study is to optimize energy consumption in CNC multi-pass turning by investigating the influence of workpiece diameter variation and applying dynamic cutting parameter adjustment. Unlike conventional studies that use fixed parameters, parameter combinations in this work were tailored for each pass based on actual load conditions, reflecting changes in spindle speed, cutting load, and energy demand as the diameter decreased. Experiments were carried out on medium carbon steel using an L9 orthogonal array, with cutting speed, feed rate, depth of cut, and tool wear as control factors. Spindle voltage and current signals were collected to establish a power model, which was then integrated with Particle Swarm Optimization (PSO) to determine the parameter set with minimum energy consumption.
    Results indicate that using higher feed rates and depths of cut can significantly shorten machining time, thereby lowering total energy consumption despite an increase in instantaneous power. The energy estimation error of the developed power model was within 1%, confirming its high accuracy. In external turning, the dynamic adjustment strategy (Case 3) reduced energy usage by 1.23% and machining time by 1.3 minutes compared to fixed speed (Case 2), and by 2.53% and 2.6 minutes compared to L9 optimal parameters (Case 1). In profile turning, Case 3 reduced energy by 3.27% and time by 0.9 minutes compared to Case 2, and by 4.33% and 4.8 minutes compared to Case 1. These findings demonstrate that dynamic parameter control accounting for geometric variation can effectively enhance both energy efficiency and machining productivity.

    摘要i 致謝xv 圖目錄xix 表目錄xxi 第1章 緒論1 1.1 研究背景1 1.3 研究動機與目的4 1.4 論文架構5 第2章 刀具磨耗、能量消耗特性與參數最佳化6 2.1 概述6 2.2 刀具磨耗定義7 2.3 刀具磨耗進展9 2.4 田口實驗設計10 2.5 變異數分析12 2.6 加工過程能量消耗特性13 2.7 限制條件17 2.8 功率分析18 2.8.1 交流電功率定義18 2.8.2 負載特性19 2.9 主軸電壓電流訊號與切削力矩的關係20 2.10 粒子群最佳化(Partical Swarm Optimization, PSO) 24 2.11 模型評估指標26 第3章 實驗設計與研究方法29 3.1 研究方法29 3.2 實驗架設30 3.3 實驗流程35 3.3.1 田口實驗參數設計與刀具路徑規劃36 3.3.2 訊號蒐集37 3.4 刀具磨耗量測43 3.5 訊號處理44 3.5.1 加工狀態分段44 3.5.2 加工道次訊號分段46 3.6 轉速分段擬合49 3.6.1 空切功率與軸空載功率49 3.6.2 切削功率擬合模型52 3.7 參數最佳化53 3.7.1 PSO模型架構54 3.7.2 單一目標最佳化55 第4章 實驗結果57 4.1 外徑車削實驗結果57 4.2 變異數分析58 4.3 單一目標最佳化60 4.3 功率參數擬合結果61 4.3.1 建模方式之擬合效能比較61 4.3.2 功率模型擬合結果與驗證63 4.4 參數最佳化65 4.4.1 外徑車削65 4.4.2 輪廓車削68 第5章 結論與未來展望73 5.1 結論73 5.2 未來展望75 參考文獻76

    [1]International Energy Agency (IEA) (2024) International energy outlook 2024.https://iea.blob.core.windows.net/assets/c036b390-ba9c-4132-870b-ffb455148b63/WorldEnergyOutlook2024.pdf
    [2]Li, W., Zein, A., Kara, S., & Herrmann, C. (2011). An investigation into fixed energy consumption of machine tools. In J. Hesselbach & C. Herrmann (Eds.), Glocalized solutions for sustainability in manufacturing (pp. 386–391). Springer. https://doi.org/10.1007/978-3-642-19692-8_47
    [3]Li, C., Wu, S., Yi, Q., Zhao, X., & Cui, L. (2022). A cutting parameter energy-saving optimization method considering tool wear for multi-feature parts batch processing. The International Journal of Advanced Manufacturing Technology, 121(7), 4941–4960. https://doi.org/10.1007/s00170-022-09557-7
    [4]Jia, S., Tang, R., & Lv, J. (2014). Therblig-based energy demand modeling methodology of machining process to support intelligent manufacturing. Journal of Intelligent Manufacturing, 25, 913–931. https://doi.org/10.1007/s10845-012-0723-9
    [5]Rajemi, M. F., Mativenga, P. T., & Aramcharoen, A. (2010). Sustainable machining: Selection of optimum turning conditions based on minimum energy considerations. Journal of Cleaner Production, 18(10–11), 1059–1065. https://doi.org/10.1016/j.jclepro.2010.01.025
    [6]Guo, Y., Duflou, J. R., Qian, J., Tang, H., & Lauwers, B. (2015). An operation-mode based simulation approach to enhance the energy conservation of machine tools. Journal of Cleaner Production, 101, 348–359. https://doi.org/10.1016/j.jclepro.2015.03.097
    [7]Xia, T., Shi, G., Si, G., Du, S., & Xi, L. (2021). Energy-oriented joint optimization of machine maintenance and tool replacement in sustainable manufacturing. Journal of Manufacturing Systems, 59, 261–271. https://doi.org/10.1016/j.jmsy.2021.01.015
    [8]Quiza Sardiñas, R., Rivas Santana, M., & Alfonso Brindis, E. (2006). Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence, 19(2), 127–133. https://doi.org/10.1016/j.engappai.2005.06.007
    [9]Pangestu, P., Pujiyanto, E., & Rosyidi, C. N. (2021). Multi-objective cutting parameter optimization model of multi-pass turning in CNC machines for sustainable manufacturing. Heliyon, 7(2), e06043. https://doi.org/10.1016/j.heliyon.2021.e06043
    [10]Warsi, S. S., Agha, M. H., Ahmad, R., Jaffery, S. H. I., & Khan, M. (2019). Sustainable turning using multi-objective optimization: A study of Al 6061 T6 at high cutting speeds. The International Journal of Advanced Manufacturing Technology, 100(1), 843-855. https://doi.org/10.1007/s00170-018-2759-2
    [11]Mativenga, P. T., & Rajemi, M. F. (2011). Calculation of optimum cutting parameters based on minimum energy footprint. CIRP Annals, 60(1), 149–152. https://doi.org/10.1016/j.cirp.2011.03.088
    [12]Tian, C., Zhou, G., Zhang, J., & Zhang, C. (2019). Optimization of cutting parameters considering tool wear conditions in low-carbon manufacturing environment. Journal of Cleaner Production, 226, 706–719. https://doi.org/10.1016/j.jclepro.2019.04.113
    [13]Bhushan, R. K. (2013). Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production, 39, 242–254. https://doi.org/10.1016/j.jclepro.2012.08.008
    [14]Sivaiah, P., & Chakradhar, D. (2019). Modeling and optimization of sustainable manufacturing process in machining of 17-4 PH stainless steel. Measurement, 134, 142–152. https://doi.org/10.1016/j.measurement.2018.10.067
    [15]Camposeco-Negrete, C. (2013). Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production, 53, 195–203. https://doi.org/10.1016/j.jclepro.2013.03.049
    [16]Liu, Z. Y., Guo, Y. B., Sealy, M. P., & Liu, Z. Q. (2016). Energy consumption and process sustainability of hard milling with tool wear progression. Journal of Materials Processing Technology, 229, 305–312. https://doi.org/10.1016/j.jmatprotec.2015.09.032
    [17]Diaz, N., Redelsheimer, E., & Dornfeld, D. (2011). Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use. Glocalized Solutions for Sustainability in Manufacturing, 263–267. https://doi.org/10.1007/978-3-642-19692-8_46
    [18]Gutowski, T., Dahmus, J., & Thiriez, A. (2006). Electrical energy requirements for manufacturing processes. In Proceedings of the 13th CIRP International Conference on Life Cycle Engineering, 623–627. Leuven, Belgium.
    [19]He, K., Tang, R., & Jin, M. (2017). Pareto fronts of machining parameters for trade-off among energy consumption, cutting force and processing time. International Journal of Production Economics, 185, 113–127. https://doi.org/10.1016/j.ijpe.2016.12.012
    [20]Bagaber, S. A., & Yusoff, A. R. (2019). Energy and cost integration for multi-objective optimisation in a sustainable turning process. Measurement, 136, 795–810. https://doi.org/10.1016/j.measurement.2018.12.096
    [21]Feng, C., Huang, Y., Wu, Y., & Zhang, J. (2022). Feature-based optimization method integrating sequencing and cutting parameters for minimizing energy consumption of CNC machine tools. The International Journal of Advanced Manufacturing Technology, 121(1–2), 503–515. https://doi.org/10.1007/s00170-022-09340-8
    [22]Lv, J., Tang, R., & Jia, S. (2014). Therblig-based energy supply modeling of computer numerical control machine tools. Journal of Cleaner Production, 65, 168–177. https://doi.org/10.1016/j.jclepro.2013.09.055
    [23]Hu, L., Tang, R., Cai, W., Feng, Y., & Ma, X. (2019). Optimisation of cutting parameters for improving energy efficiency in machining process. Robotics and Computer-Integrated Manufacturing, 59, 406-416. https://doi.org/10.1016/j.rcim.2019.04.015
    [24]Zhang, X., Yu, T., Dai, Y., Qu, S., & Zhao, J. (2020). Energy consumption considering tool wear and optimization of cutting parameters in micro milling process. International Journal of Mechanical Sciences, 178, 105628. https://doi.org/10.1016/j.ijmecsci.2020.105628
    [25]Chauhan, P., Pant, M., & Deep, K. (2015). Parameter optimization of multi-pass turning using chaotic PSO. International Journal of Machine Learning and Cybernetics, 6(2), 319–337. https://doi.org/10.1007/s13042-013-0221-1
    [26]Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2021). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing, 32(1), 77–90. https://doi.org/10.1007/s10845-020-01559-0
    [27]Costa, A., Celano, G., & Fichera, S. (2011). Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique. The International Journal of Advanced Manufacturing Technology, 53(5), 421–433. https://doi.org/10.1007/s00170-010-2861-6
    [28]Lu, C., Gao, L., Li, X., & Chen, P. (2016). Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm. Journal of Cleaner Production, 137, 1516–1531. https://doi.org/10.1016/j.jclepro.2016.07.029
    [29]ISO 3685-1993: https://www.iso.org/standard/9151.html
    [30]Roszkowski, A., Piórkowski, P., Skoczyński, W., Borkowski, W., & Jankowski, T. (2020). Study on the impact of cutting tool wear on machine tool energy consumption. Advances in Science and Technology Research Journal, 14(3), 158–164. https://doi.org/10.12913/22998624/123283
    [31]Bagga, P. J., Makhesana, M. A., Patel, H. D., & Patel, K. M. (2021). Indirect method of tool wear measurement and prediction using ANN network in machining process. Materials Today: Proceedings, 44, 1549–1554. https://doi.org/10.1016/j.matpr.2020.11.770
    [32]Cao, M., Zhou, C., & Li, K. (2021). Research on the relationship between workpiece surface machining quality and turning tool wear. Journal of Physics: Conference Series, 2029(1), 012071. https://doi.org/10.1088/1742-6596/2029/1/012071
    [33]Liu, C., Li, Y., Hua, J., Lu, N., & Mou, W. (2018). Real-time cutting tool state recognition approach based on machining features in NC machining process of complex structural part. International Journal of Advanced Manufacturing Technology, 97(1-4), 229–241. https://doi.org/10.1007/s00170-018-1916-y
    [34]Li, C., Wu, S., Yi, Q., Zhao, X., & Cui, L. (2022). A cutting parameter energy-saving optimization method considering tool wear for multi-feature parts batch processing. The International Journal of Advanced Manufacturing Technology, 121(7), 4941-4960. https://doi.org/10.1007/s00170-022-09557-7
    [35]台灣電力公司 營業規章施行細則:第四章 電費之計收.https://www.taipower.com.tw(存取日期:2025年6月16日)
    [36]Saidur, R. (2010). A review on electrical motors energy use and energy savings. Renewable and Sustainable Energy Reviews, 14(3), 877–898. https://doi.org/10.1016/j.rser.2009.10.018
    [37]Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS'95), 39–43. https://doi.org/10.1109/MHS.1995.494215
    [38]Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968
    [39]Specification of Force One FCL-2004:https://forceonecnc.com/products/detail/FCL-20
    [40]Specification of Mitsubishi VNMG160404-MA VP15TF cutting tool: http://www.mitsubishicarbide.net/mmus/enus/turning_inserts/no_srs/20046629
    [41]Avram, O. I., & Xirouchakis, P. (2011). Evaluating the use phase energy requirements of a machine tool system. Journal of Cleaner Production, 19(6–7), 699–711. https://doi.org/10.1016/j.jclepro.2010.10.010

    無法下載圖示 校內:2027-08-22公開
    校外:2027-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE