| 研究生: |
黃怡萱 Huang, Yi-Hsuan |
|---|---|
| 論文名稱: |
鹼活化高嶺土對Sr2+及Co2+離子之吸附特性研究 Sorption Characteristics of Sr2+ and Co2+ ions of Alkali Activated Kaolinite |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 高嶺土 、Sr2+ 、Cs+ 、Co2+ 、改質 、鹼活化 、吸附 、離子競爭 |
| 外文關鍵詞: | Kaolinite, Strontium, Cobalt, Modification, Alkali activation, Adsorption, Ion competition, Mineralization |
| 相關次數: | 點閱:136 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選用自然界常見的高嶺土礦物進行改質處理,應用作為Sr2+及Co2+吸附劑。實驗主要分為三大部分,第一部分探討天然高嶺土的適當改質參數,將熱處理後的高嶺土(偏高嶺土)分別進行酸鹼活化及鹼活化,比較預先經由HCl酸活化處理之偏高嶺土,以及直接進行NaOH鹼活化處理,對於Sr2+及Co2+之吸附效率差異,並檢討酸處理的必要性。實驗結果顯示,預先進行酸活化處理之偏高嶺土,雖可提高比表面積,但在鹼活化後由於電荷補償作用又重新堆疊,使比表面積下降,且其與直接進行鹼活化處理之樣品,所得產物性質相近,兩者皆可有效將Na+置入,預先酸處理並非必要步驟。批次吸附實驗結果顯示,鹼活化之高嶺土對於Sr2+及Co2+之最佳飽和吸附量分別為180.2 mg/g以及118.5 mg/g。
透過NMR的分析可知,在鹼活化過程中,偏高嶺土中的Si-O-Si鍵結會先崩解,再與AlO4聚合形成高離子性的Al-O-Si鍵結,同時將Na+離子置入結構中,Na+的配位形式隨著鹼活化時間的延長,有朝向高離子性的配位形式發展,在陳化時間達到7天時形成以Zeolite A為主的結晶相。Sr2+之吸附效率與高離子性鍵結的比例呈正相關,隨著陳化時間延長吸附容量有上升的趨勢,而Co2+則因離子篩效應,在Zeolite A生成時吸附效率反而降低。
從動力學實驗中發現,鹼活化改質高嶺土對於Sr2+與Co2+的吸附行為分為兩階段,吸附初期以表面化學吸附及化學沉澱為主,吸附後期則由離子交換反應所主導,兩者之吸附機制皆為一複合式的吸附反應。由熱力學結果得知,鹼活化改質高嶺土吸附Sr2+及Co2+皆為一自發吸熱反應。
與改質膨潤土進行元素與結構的比較發現,高嶺土在NaOH溶液中,隨著陳化時間的延長發生了溶解再聚合的反應,改質膨潤土卻無發生相似反應,其關鍵歸因於Si/Al比例的差異。鹼活化之改質高嶺土中,溶出的Al-O足以與Si-O形成足量的N-A-S-H凝膠持續進行聚合反應,使得質量損失率相對較低。
本研究的第二部分則是評估鹼活化改質高嶺土進行多重離子的吸附,探討離子競爭吸附的行為。在Sr2+、Co2+、Cs+的離子競爭吸附實驗中發現,Sr2+、Co2+於單一及三重溶液的環境下的吸附容量總和相似,推測二價陽離子應佔據相同的吸附位置,且Sr2+、Co2+的總吸附容量不會受到Cs+的共存而有所影響。而Cs+則受到Sr2+、Co2+的共存明顯受到影響,吸附效率降低,顯示本研究所製成之鹼活化改質高嶺土對於二價陽離子有較高的交換選擇性。
此外,本研究亦嘗試將鹼活化改質高嶺土應用作為高酸度工業廢水的處理。使用工廠含Ni2+與Cu2+之高酸度(pH < 2)的工業廢水作為測試對象,研究結果顯示,鹼活化改質高嶺土對於90 ppm的Ni2+可到達100 %的去除率,不受高酸度(pH = 1.53)以及廢水中之Na+、K+等離子所影響。而含300 ppm的Cu2+之工業廢水則僅有6 %左右的去除率,在稀釋三倍之後去除率大幅上升至98 %,推測 Cu2+離子之交換作用受到其他離子的競爭影響較為明顯。
This study is devoted in the decontamination of nuclear wastewater, especially Sr2+ and Co2+. Kaolinite was employed an alkali activation to increase the adsorption capacity of Sr2+ and Co2. The adsorption capacity of Sr2+ and Co2+ increased to 180.2 and 118.5 mg/g after alkali activation. The structure and chemical composition of alkali-activated kaolinite in correlation with the adsorption efficiency were carefully examined. The key factor that determine the adsorption capacity and weight loss in the alkali-activated clay minerals was investigated for the purpose of facilitating the selection of appropriate adsorbents for decontamination treatment of wastewater. Two clay minerals, i. e. kaolinite and bentonite that exhibited different structures and chemical compositions, were studied. The alkali-activated kaolinite was also tested in multi-cations solutions to investigate the behavior of ion competition. All the adsorption capacity of Sr2+, Co2+ and Cs+ decreased because of other cations coexisted. However, the total equivalent amount of adsorption capacity of Sr2+ and Co2+ in ternary system remains almost the same with the summary of single solute system, implying the selected adsorption for divalent ions. After the adsorption completed, the alkali-activated kaolinite was mineralized to carry out the ionic immobilization. The adsorbed Sr2+ and Co2+ ions was immobilized in aluminosilicate structure.
[1] Smičiklas, I., Dimović, S., & Plećaš, I. (2007). Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35(1-2), 139-144.
[2] 易發成,錢光人,李玉香,(2004)。礦物材料對核素Sr、Cs的吸附性能研究,中國礦業,13,67-70.
[3] 陳家齊,(2015)。探討天然沸石之除銫能力,臺灣海洋大學應用地球科學研究所,碩士論文。
[4] Ma, B., Oh, S., Shin, W. S., & Choi, S. J. (2011). Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276(1-3), 336-346.
[5] Gutierrez, M., & Fuentes, H. R. (1991). Competitive adsorption of cesium, cobalt and strontium in conditioned clayey soil suspensions. Journal of Environmental Radioactivity, 13(4), 271-282.
[6] Gutierrez, M., & Fuentes, H. R. (1993). A Langmuir isotherm-based prediction of competitive sorption of Sr, Cs, and Co in Ca-montmorillonite. Waste Management, 13(4), 327-332.
[7] Vipin, A. K., Hu, B., & Fugetsu, B. (2013). Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. Journal of hazardous materials, 258, 93-101.
[8] Delchet, C., Tokarev, A., Dumail, X., Toquer, G., Barré, Y., Guari, Y., & Grandjean, A. (2012). Extraction of radioactive cesium using innovative functionalized porous materials. Rsc Advances, 2(13), 5707-5716.
[9] Park, Y., Lee, Y. C., Shin, W. S., & Choi, S. J. (2010). Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering Journal, 162(2), 685-695.
[10] Ma, B., Shin, W. S., Oh, S., Park, Y. J., & Choi, S. J. (2010). Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Separation Science and Technology, 45(4), 453-462.
[11] 陳皓馨,(2017)。天然膨潤土改質與膠囊化處理及其對Sr2+及Cs+離子之吸附特性研究,國立成功大學資源工程所,碩士論文。
[12] Marinin, D. V., & Brown, G. N. (2000). Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management, 20(7), 545-553.
[13] Rengaraj, S., & Moon, S. H. (2002). Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Water research, 36(7), 1783-1793.
[14] Caccin, M., Giacobbo, F., Da Ros, M., Besozzi, L., & Mariani, M. (2013). Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. Journal of Radioanalytical and Nuclear Chemistry, 297(1), 9-18.
[15] Kasaini, H., Kekana, P. T., Saghti, A. A., & Bolton, K. (2013). Adsorption characteristics of cobalt and nickel on Oxalate-treated activated carbons in sulphate media.
[16] 鄺子薇,(2015)。礦物膠囊製程開發及其對Cs、Sr離子吸附性質之研究,國立成功大學資源工程所,碩士論文。
[17] Eren, E., & Afsin, B. (2008). An investigation of Cu (II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials, 151(2-3), 682-691.
[18] Stathi, P., Litina, K., Gournis, D., Giannopoulos, T. S., & Deligiannakis, Y. (2007). Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Journal of Colloid and Interface Science, 316(2), 298-309.
[19] Dean, J. A. (1999). Lange's handbook of chemistry. New york; London: McGraw-Hill, Inc..
[20] Manos, M. J., Ding, N., & Kanatzidis, M. G. (2008). Layered metal sulfides: exceptionally selective agents for radioactive strontium removal. Proceedings of the National Academy of Sciences, 105(10), 3696-3699.
[21] Manos, M. J., & Kanatzidis, M. G. (2009). Highly Efficient and Rapid Cs+ Uptake by the Layered Metal Sulfide K2 x Mn x Sn3− x S6 (KMS-1). Journal of the American Chemical Society, 131(18), 6599-6607.
[22] Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., & Gao, X. P. (2008). Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Advanced Materials, 20(14), 2777-2781.
[23] Xiao, X., Hayashi, F., Shiiba, H., Selcuk, S., Ishihara, K., Namiki, K., & Teshima, K. (2016). Platy KTiNbO5 as a selective Sr ion adsorbent: crystal growth, adsorption experiments, and DFT calculations. The Journal of Physical Chemistry C, 120(22), 11984-11992.
[24] Lin, Y., Fryxell, G. E., Wu, H., & Engelhard, M. (2001). Selective sorption of cesium using self-assembled monolayers on mesoporous supports. Environmental science & technology, 35(19), 3962-3966.
[25] Sangvanich, T., Sukwarotwat, V., Wiacek, R. J., Grudzien, R. M., Fryxell, G. E., Addleman, R. S., & Yantasee, W. (2010). Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. Journal of hazardous materials, 182(1-3), 225-231.
[26] Turgis, R., Arrachart, G., Delchet, C., Rey, C., Barré, Y., Pellet-Rostaing, S., & Grandjean, A. (2013). An original “click and bind” approach for immobilizing copper hexacyanoferrate nanoparticles on mesoporous silica. Chemistry of Materials, 25(21), 4447-4453.
[27] Yang, H., Li, H., Zhai, J., Sun, L., Zhao, Y., & Yu, H. (2014). Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chemical Engineering Journal, 246, 10-19.
[28] Vipin, A. K., Fugetsu, B., Sakata, I., Isogai, A., Endo, M., Li, M., & Dresselhaus, M. S. (2016). Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Scientific reports, 6, 37009.
[29] Metwally, S. S., Ahmed, I. M., & Rizk, H. E. (2017). Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. Journal of Alloys and Compounds, 709, 438-444.
[30] Ca, D. V., & Cox, J. A. (2004). Solid phase extraction of cesium from aqueous solution using sol-gel encapsulated cobalt hexacyanoferrate. Microchimica Acta, 147(1-2), 31-37.
[31] Valsala, T. P., Roy, S. C., Shah, J. G., Gabriel, J., Raj, K., & Venugopal, V. (2009). Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. Journal of hazardous materials, 166(2-3), 1148-1153.
[32] Ames Jr, L. L. (1965). Self-diffusion of some cations in open zeolites. American Mineralogist: Journal of Earth and Planetary Materials, 50(3-4), 465-475.
[33] El-Kamash, A. M. (2008). Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. Journal of hazardous materials, 151(2-3), 432-445.
[34] Merceille, A., Weinzaepfel, E., Barré, Y., & Grandjean, A. (2012). The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Separation and purification technology, 96, 81-88.
[35] Bendenia, S., Marouf-Khelifa, K., Batonneau-Gener, I., Derriche, Z., & Khelifa, A. (2011). Adsorptive properties of X zeolites modified by transition metal cation exchange. Adsorption, 17(2), 361-370.
[36] Khelifa, A., Derriche, Z., & Bengueddach, A. (1999). Adsorption of propene on NaX zeolite exchanged with Zn2+ and Cu2+. Applied Catalysis A: General, 178(1), 61-68.
[37] Hammoudi, H., Bendenia, S., Marouf-Khelifa, K., Marouf, R., Schott, J., & Khelifa, A. (2008). Effect of the binary and ternary exchanges on crystallinity and textural properties of X zeolites. Microporous and Mesoporous Materials, 113(1-3), 343-351.
[38] Sebastian, J., Peter, S. A., & Jasra, R. V. (2005). Adsorption of nitrogen, oxygen, and argon in cobalt (II)-exchanged zeolite X. Langmuir, 21(24), 11220-11225.
[39] Tran, H. L., Kuo, M. S., Yang, W. D., & Huang, Y. C. (2016). Study on Modification of NaX Zeolites: The Cobalt (II)-Exchange Kinetics and Surface Property Changes under Thermal Treatment. Journal of Chemistry, 2016.
[40] Durce, D., Landesman, C., Grambow, B., Ribet, S., & Giffaut, E. (2014). Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: batch and transport experiments. Journal of contaminant hydrology, 164, 308-322.
[41] Bouzidi, A., Souahi, F., & Hanini, S. (2010). Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. Journal of hazardous materials, 184(1-3), 640-646.
[42] Wang, T. H., Li, M. H., Yeh, W. C., Wei, Y. Y., & Teng, S. P. (2008). Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite. Journal of Hazardous Materials, 160(2-3), 638-642.
[43] Abdel-Karim, A. A. M., Zaki, A. A., Elwan, W., El-Naggar, M. R., & Gouda, M. M. (2016). Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Applied Clay Science, 132, 391-401.
[44] Ghaemi, A., Torab-Mostaedi, M., & Ghannadi-Maragheh, M. (2011). Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. Journal of hazardous materials, 190(1-3), 916-921.
[45] Ding, D., Lei, Z., Yang, Y., & Zhang, Z. (2014). Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions. Chemical Engineering Journal, 236, 17-28.
[46] Bhattacharyya, K. G., & Gupta, S. S. (2007). Adsorption of Co (II) from aqueous medium on natural and acid activated kaolinite and montmorillonite. Separation Science and Technology, 42(15), 3391-3418.
[47] Al-Jlil, S. A. (2017). Adsorption of cobalt ions from waste water on activated Saudi clays. Applied Water Science, 7(1), 383-391.
[48] Al-Shahrani, S. S. (2014). Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria Engineering Journal, 53(1), 205-211.
[49] Eloussaief, M., & Benzina, M. (2010). Efficiency of natural and acid-activated clays in the removal of Pb (II) from aqueous solutions. Journal of hazardous materials, 178(1-3), 753-757.
[50] Bhattacharyya, K. G., & Gupta, S. S. (2008). Influence of acid activation on adsorption of Ni (II) and Cu (II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chemical Engineering Journal, 136(1), 1-13.
[51] Unuabonah, E. I., Adebowale, K. O., Olu-Owolabi, B. I., Yang, L. Z., & Kong, L. (2008). Adsorption of Pb (II) and Cd (II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy, 93(1-2), 1-9.
[52] Unuabonah, E. I., Olu-Owolabi, B. I., Adebowale, K. O., & Ofomaja, A. E. (2007). Adsorption of lead and cadmium ions from aqueous solutions by tripolyphosphate-impregnated Kaolinite clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2-3), 202-211.
[53] Kaya, A., & Ören, A. H. (2005). Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials, 125(1-3), 183-189.
[54] Soeiro, T. N., De Freitas, E. D., Maia, G. S., Santos, A. B., Vieira, M. G. A., & Guirardello, R. (2017). Evaluation of Cu2+ ions adsorption equilibrium in calcined bentonite clay and after treatment with sodium. Chemical Engineering Transactions, 619-624.
[55] Blais, J. F., Shen, S., Meunier, N., & Tyagi, R. D. (2003). Comparison of natural adsorbents for metal removal from acidic effluent. Environmental technology, 24(2), 205-215.
[56] Ararem, A., Bouras, O., & Bouzidi, A. (2013).. Journal of Radioanalytical and Nuclear Chemistry, 298(1), 537-545.
[57] Long, H., Wu, P., Yang, L., Huang, Z., Zhu, N., & Hu, Z. (2014). Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. Journal of colloid and interface science, 428, 295-301.
[58] Manohar, D. M., Noeline, B. F., & Anirudhan, T. S. (2006). Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. Applied Clay Science, 31(3-4), 194-206.
[59] Shawabkeh, R. A., Al-Khashman, O. A., Al-Omari, H. S., & Shawabkeh, A. F. (2007). Cobalt and zinc removal from aqueous solution by chemically treated bentonite. The Environmentalist, 27(3), 357-363.
[60] Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H., & Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, 90-96.
[61] Yousef, R. I., El-Eswed, B., Alshaaer, M., Khalili, F., & Khoury, H. (2009). The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products. Journal of Hazardous materials, 165(1-3), 379-387.
[62] El-Eswed, B., Yousef, R. I., Alshaaer, M., Khalili, F., & Khoury, H. (2009). Alkali solid-state conversion of kaolin and zeolite to effective adsorbents for removal of lead from aqueous solution. Desalination and Water Treatment, 8(1-3), 124-130.
[63] Andrejkovičová, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., da Silva, E. F., Rocha, F. (2016). The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Applied Clay Science, 126, 141-152.
[64] Ge, Y., Cui, X., Kong, Y., Li, Z., He, Y., & Zhou, Q. (2015). Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: synthesis and evaluation. Journal of hazardous materials, 283, 244-251.
[65] Kara, İ., Yilmazer, D., & Akar, S. T. (2017). Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions. Applied Clay Science, 139, 54-63.
[66] López, F. J., Sugita, S., & Kobayashi, T. (2013). Cesium-adsorbent geopolymer foams based on silica from rice husk and metakaolin. Chemistry Letters, 43(1), 128-130.
[67] Chen, Y. L., Tong, Y. Y., Pan, R. W., & Tang, J. (2013). The Research on Adsorption Behaviors and Mechanisms of Geopolymers on Sr2+, Co2+ and Cs+. In Advanced Materials Research (Vol. 704, pp. 313-318). Trans Tech Publications.
[68] Rasaki, S. A., Bingxue, Z., Guarecuco, R., Thomas, T., & Minghui, Y. (2019). Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review. Journal of cleaner production, 213, 42-58
[69] Ariffin, N., Abdullah, M. M. A. B., Zainol, R. R. M. A., & Murshed, M. F. (2017, September). Geopolymer as an adsorbent of heavy metal: A review. In AIP Conference Proceedings (Vol. 1885, No. 1, p. 020030). AIP Publishing.
[70] Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., & Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253-267.
[71] Hu, S., Wang, H., Zhang, G., & Ding, Q. (2008). Bonding and abrasion resistance of geopolymeric repair material made with steel slag. Cement and concrete composites, 30(3), 239-244.
[72] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: the current state of the art. Journal of materials science, 42(9), 2917-2933.
[73] 鄭大偉,2010。無機聚合技術的發展應用及回顧,礦冶,54,1, 141-157。
[74] Liew, Y. M., Heah, C. Y., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595-629.
[75] 周佳靜,何鐿夫,以偏高嶺土製備無機聚合物材料其影響因子之探討,台灣環境資源永續發展研討會,6,1-12 (2008)
[76] 楊奉儒,周家靜,陳清齊,以偏高嶺土製備無機聚合物建材之研究,台灣環境資源永續發展研討會,6,147-158 (2007)
[77] Buchwald, A., Hilbig, H., & Kaps, C. (2007). Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. Journal of materials science, 42(9), 3024-3032.
[78] Kalaiyarrasi, A. R. R., & Partheeban, P. (2019). Mechanical and Micro Structural Properties of Metakaolin Geopolymer. Emerging Materials Research, 1-11.
[79] Riyap, H. I., Bewa, C. N., Banenzoué, C., Tchakouté, H. K., Rüscher, C. H., Kamseu, E., & Leonelli, C. (2019). Microstructure and mechanical, physical and structural properties of sustainable lightweight metakaolin-based geopolymer cements and mortars employing rice husk. Journal of Asian Ceramic Societies, (just-accepted).
[80] Aboudi Mana, S. C., Hanafiah, M. M., & Chowdhury, A. J. K. (2017). Environmental characteristics of clay and clay-based minerals. Geology, Ecology, and Landscapes, 1(3), 155-161.
[81] Klein, C., & Hurlbut Jr, C. S. (1993). Manual of Mineralogy, 21" edition.
[82] 王連軍,黄中華.,膨潤土的改性研究,工業水處理,1,9-11 (1999)
[83] Chakraborty, A. K. (2003). DTA study of preheated kaolinite in the mullite formation region. Thermochimica Acta, 398(1-2), 203-209.
[84] Belver, C., Bañares Muñoz, M. A., & Vicente, M. A. (2002). Chemical activation of a kaolinite under acid and alkaline conditions. Chemistry of Materials, 14(5), 2033-2043.
[85] Qiu, Y., Yu, S., Song, Y., Wang, Q., Zhong, S., & Tian, W. (2013). Investigation of solution chemistry effects on sorption behavior of Sr (II) on sepiolite fibers. Journal of Molecular Liquids, 180, 244-251.
[86] Komadel, P., Madejova, J., Janek, M., Gates, W. P., Kirkpatrick, R. J., & Stucki, J. W. (1996). Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44(2), 228-236.
[87] Bohn, H. L., & McNeal, B. L. (1985). GA O'connor. Soil chemistry.
[88] 孔繁凱,(2014)。天然絲光沸石與高嶺土對Cs+與Sr2+離子的特性研究及介孔二氧化矽膠囊包覆技術開發,國立成功大學資源工程所,碩士論文。
[89] Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons.
[90] 黃任偉,(2002),粒狀氫氧化鐵吸附地下水中砷的研究,國立成功大學環境工程所,碩士論文。
[91] Khalfaoui, M., Knani, S., Hachicha, M. A., & Lamine, A. B. (2003). New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. Journal of colloid and interface science, 263(2), 350-356.
[92] Sarkar, M., Acharya, P. K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science, 266(1), 28-32.
[93] Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
[94] Ball, W. P., & Roberts, P. V. (1991). Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environmental Science & Technology, 25(7), 1237-1249.
[95] Yuh-Shan, H. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171-177.
[96] Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
[97] 陳弘梅,(2010)。合成方沸石對鎳錳鉻鍶離子吸附之研究,國立成功大學資源工程所,碩士論文。
[98] Everett, D. H. (1972). " IUPAC Manual of Symbols and Terminology", appendix 2, Part 1, Colloid and Surface Chemistry. Pure Appl. Chem., 31, 578-621.
[99] Ouki, S. K., & Kavannagh, M. (1997). Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management & Research, 15(4), 383-394.
[100] Lambert, J. F., Millman, W. S., & Fripiat, J. J. (1989). Revisiting kaolinite dehydroxylation: A 29Si and 27Al MAS NMR study. Journal of the American Chemical Society, 111(10), 3517-3522.
[101] 曹師維,(2017)。無機聚合技術固化模擬放射性粒狀離子交換樹脂之研究,國立台北科技大學資源工程所,碩士論文。
[102] 彭軍芝,桂苗苗,傅翠梨,李锦堂,(2011)。鍛燒制度對高嶺土的結構特性及膠凝活性的影響,建築材料學報,4(14),482-485。
[103] 王雪靜,(2006)。高嶺土和鍛燒高嶺土的微觀結構研究,中國非金屬礦工業導刊,5,18-21。
[104] MacKenzie, K. J. D., Brown, I. W. M., Meinhold, R. H., & Bowden, M. E. (1985). Outstanding Problems in the Kaolinite‐Mullite Reaction Sequence Investigated by 29Si and 27Al Solid‐State Nuclear Magnetic Resonance: I, Metakaolinite. Journal of the American Ceramic Society, 68(6), 293-297.
[105] 呂軒志,王泰典,鄭大偉,翁祖炘,(2012)。以實驗設計法探討無機聚合物力學特性之影響因素,台灣鑛業,64 (2),37-48。
[106] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: the current state of the art. Journal of materials science, 42(9), 2917-2933.
[107] Fernández-Jiménez, A., De La Torre, A. G., Palomo, A., López-Olmo, G., Alonso, M. M., & Aranda, M. A. G. (2006). Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel, 85(14-15), 1960-1969.
[108] Palomo, A., Fernández-Jiménez, A., & Criado, M. (2004). 'Geopolymers": same basic chemistry, different microstructures. Materiales de Construcción, 54(275), 77-91.
[109] Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2006). The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous and Mesoporous materials, 91(1-3), 111-119.
[110] Zhang, X., Tong, D., Jia, W., Tang, D., Li, X., & Yang, R. (2014). Studies on room-temperature synthesis of zeolite NaA. Materials Research Bulletin, 52, 96-102.
[111] Mosser, C., Michot L. J., Villieras, F. (1997). Migration of cations in copper(II)- exchanged montmorillonite and laponite upon heating, Clays and Clay Minerals, 45(6), 789-802.
[112] Fosso-Kankeu, E., Reitz, M., & Waanders, F. (2014). Selective adsorption of heavy and light metals by natural zeolites.
[113] Ali, W., Hussain, M., Ali, M., Mubushar, M., Tabassam, M. A. R., Mohsin, M., & Nasir, H. A. A. (2013). Evaluation of Freundlich and Langmuir isotherm for potassium adsorption phenomena. International Journal of Agriculture and Crop Sciences, 6(15), 1048.
[114] Buchwald, A., Hilbig, H., & Kaps, C. (2007). Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. Journal of materials science, 42(9), 3024-3032.
[115] Fyfe, C. A., Thomas, J. M., Klinowski, J., & Gobbi, G. C. (1983). Magic‐Angle‐Spinning NMR (MAS‐NMR) Spectroscopy and the Structure of Zeolites. Angewandte Chemie International Edition in English, 22(4), 259-275.
[116] 廖秀曼,(2014)。銪離子於(鈣、鍶)磷矽酸鹽玻璃中的螢光性質及其與基質結構特性之關聯性研究,國立成功大學資源工程研究所,碩士論文。
[117] Singh, P. S., Bastow, T., & Trigg, M. (2005). Structural studies of geopolymers by 29 Si and 27 Al MAS-NMR. Journal of materials science, 40(15), 3951-3961.
[118] Lee, S. K., & Stebbins, J. F. (2003). The distribution of sodium ions in aluminosilicate glasses: a high-field Na-23 MAS and 3Q MAS NMR study. Geochimica et Cosmochimica Acta, 67(9), 1699-1709.
[119] Angeli, F., Delaye, J. M., Charpentier, T., Petit, J. C., Ghaleb, D., & Faucon, P. (2000). Influence of glass chemical composition on the Na–O bond distance: a 23Na 3Q-MAS NMR and molecular dynamics study. Journal of Non-Crystalline Solids, 276(1-3), 132-144.
[120] El-Rahman, K. A., El-Kamash, A. M., El-Sourougy, M. R., & Abdel-Moniem, N. M. (2006). Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+ and Mg2+ ions from aqueous waste solutions using zeolite A. Journal of radioanalytical and nuclear chemistry, 268(2), 221-230.
[121] Julbe, A., & Drobek, M. (2016). Zeolite A Type. Encyclopedia of Membranes, 2055-2056.
[122] Julbe, A., & Drobek, M. (2015). Zeolite X: Type. Encyclopedia of Membranes, 1-2.
[123] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
[124] Langley, S., Gault, A. G., Ibrahim, A., Takahashi, Y., Renaud, R., Fortin, D., & Ferris, F. G. (2009). Sorption of strontium onto bacteriogenic iron oxides. Environmental science & technology, 43(4), 1008-1014.
[125] Venkatesan, K. A., Selvam, G. P., & Rao, P. V. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357.
[126] Opitz, A. K., Rameshan, C., Kubicek, M., Rupp, G. M., Nenning, A., Götsch, T., & Klötzer, B. (2018). The Chemical Evolution of the La 0.6 Sr 0.4 CoO 3− δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity. Topics in Catalysis, 61(20), 2129-2141.
[127] Liu, X., Cao, Y., Pal, B., Middey, S., Kareev, M., Choi, Y., & Chakhalian, J. (2017). Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics. Physical Review Materials, 1(7), 075004.
[128] Lukashuk, L., Föttinger, K., Kolar, E., Rameshan, C., Teschner, D., Hävecker, M., & Stöger-Pollach, M. (2016). Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts. Journal of catalysis, 344, 1-15.
[129] Babar, P. T., Lokhande, A. C., Pawar, B. S., Gang, M. G., Jo, E., Go, C., & Kim, J. H. (2018). Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Applied Surface Science, 427, 253-259.
[130] Gupta, S. S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: a review. Advances in colloid and interface science, 162(1-2), 39-58.
[131] Özacar, M., Şengil, İ. A., & Türkmenler, H. (2008). Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal, 143(1-3), 32-42.
[132] Barry, P. H. JPCalc for Windows (JPCalcW) Junction Potential Calculator Users ‘Manual. 1996-2009.
[133] Vanysek, P. (2000). Ionic conductivity and diffusion at infinite dilution. CRC handbook of chemistry and physics, 83, 76-78.
[134] Kasap, S., Tel, H., & Piskin, S. (2011). Preparation of TiO 2 nanoparticles by sonochemical method, isotherm, thermodynamic and kinetic studies on the sorption of strontium. Journal of Radioanalytical and Nuclear Chemistry, 289(2), 489-495.
[135] Guan, W., Pan, J., Ou, H., Wang, X., Zou, X., Hu, W., & Wu, X. (2011). Removal of strontium (II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: equilibrium, kinetics and thermodynamics. Chemical Engineering Journal, 167(1), 215-222.
[136] Yusan, S., & Erenturk, S. (2011). Adsorption characterization of strontium on PAN/zeolite composite adsorbent. World Journal of Nuclear Science and Technology, 1(01), 6.
[137] Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1-3), 306-318.
[138] Hafizi, M., Abolghasemi, H., Moradi, M., & Milani, S. A. (2011). Strontium adsorption from sulfuric acid solution by Dowex 50W-X resins. Chinese Journal of Chemical Engineering, 19(2), 267-272.
[139] Lee, C. H., Park, J. M., & Lee, M. G. (2015). Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A: Adsorption isotherm and kinetics. J. Environ. Sci. Int, 24(2), 151-162.
[140] Galamboš, M., Suchánek, P., & Rosskopfová, O. (2012). Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. Journal of Radioanalytical and Nuclear Chemistry, 293(2), 613-633.
[141] Davidovits, J. (2008). Geopolymer chemistry and applications. Geopolymer Institute. 61-76
[142] Goryan, A. S. (2012). Nuclear magnetic resonance studies on bentonite in complex mixed systems (Doctoral dissertation, Luleå tekniska universitet).
[143] Garcia-Lodeiro, I., Cherfa, N., Zibouche, F., Fernández-Jimenez, A., & Palomo, A. (2015). The role of aluminium in alkali-activated bentonites. Materials and Structures, 48(3), 585-597.
[144] Ruiz-Santaquiteria, C., Fernández-Jiménez, A., & Palomo, A. (2011). Quantitative determination of reactive SiO2 and Al2O3 in aluminosilicate materials. In Proceedings of XIII International Congress on the Chemistry of Cement, Madrid, Spain.
[145] Sagoe-Crentsil, K., & Brown, T. J. (2006). Some key materials and process parameters governing geopolymer binder performance.
[146] Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 64(315), 022.
[147] Ozeki, K., & Aoki, H. (2016). Evaluation of the adsorptive behavior of cesium and strontium on hydroxyapatite and zeolite for decontamination of radioactive substances. Bio-medical materials and engineering, 27(2-3), 227-236.
[148] Wang, L., Feng, M., Liu, C., Zhao, Y., Li, S., Wang, H., & Li, S. (2009). Supporting of potassium copper hexacyanoferrate on porous activated carbon substrate for cesium separation. Separation Science and Technology, 44(16), 4023-4035.
[149] Zhang, H., Kim, Y. K., Hunter, T. N., Brown, A. P., Lee, J. W., & Harbottle, D. (2017). Organically modified clay with potassium copper hexacyanoferrate for enhanced Cs+ adsorption capacity and selective recovery by flotation. Journal of Materials Chemistry A, 5(29), 15130-15143.
[150] Dimitrijević, R., Kremenović, A., Dondur, V., Tomašević-Čanović, M., & Mitrović, M. (1997). Thermally Induced Conversion of Sr-Exchanged LTA-and FAU-Framework Zeolites. Syntheses, Characterization, and Polymorphism of Ordered and Disordered Sr1-x Al2-2 x Si2+ 2 x O8 (x= 0; 0.15), Diphyllosilicate, and Feldspar Phases. The Journal of Physical Chemistry B, 101(20), 3931-3936.
[151] Bulbulian, S., & Bosch, P. (2001). Vitrification of gamma irradiated 60Co2+ zeolites. Journal of nuclear materials, 295(1), 64-72.
[152] Kotz, J. C., Treichel, P. M., & Townsend, J. (2012). Chemistry and chemical reactivity. Cengage Learning.
[153] Munthali, M. W., Johan, E., Aono, H., & Matsue, N. (2015). Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian Ceramic Societies, 3(3), 245-250.
[154] Lee, H. Y., Kim, H. S., Jeong, H. K., Park, M., Chung, D. Y., Lee, K. Y., & Lim, W. T. (2017). Selective removal of radioactive cesium from nuclear waste by zeolites: on the origin of cesium selectivity revealed by systematic crystallographic studies. The Journal of Physical Chemistry C, 121(19), 10594-10608.
[155] Ryu, J., Kim, S., Hong, H. J., Hong, J., Kim, M., Ryu, T., & Kim, B. G. (2016). Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: Removal vs. recovery. Chemical Engineering Journal, 304, 503-510.
[156] Tu, Y. J., You, C. F., Zhang, Z., Duan, Y., Fu, J., & Xu, D. (2016). Strontium removal in seawater by means of composite magnetic nanoparticles derived from industrial sludge. Water, 8(8), 357.
校內:2024-07-11公開