簡易檢索 / 詳目顯示

研究生: 邱浩宇
Ciou, Hao-Yu
論文名稱: 在離子液體中製備孔洞型鈀金雙金屬電極應用於葡萄糖電催化
Preparation of porous Pd-Au in Ionic Liquid for glucose electrooxidation
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 88
中文關鍵詞: 離子液體奈米孔洞葡萄糖電催化
外文關鍵詞: ionic liquid, nanoporous, glucose, electrocatalysis
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在ZnCl2-EMIC離子液體中,利用電化學合金/去合金法在低於150oC以下的溫度製備出孔洞型鈀金雙金屬電極,藉由將鋅沉積於鈀金電極表面得到鈀金鋅合金,再將鋅剝除後即可得到孔洞型鈀金電極。分為循環伏安法(CV)法以及定電位法(CA)法兩種方式製備,CV法是利用循環伏安法多圈數掃描,在慢掃速10 mV s-1,電位範圍-0.3V~1.0V(vs.Zn)下,重複的沉積/剝除鋅後而製備孔洞形鈀金電極;CA法是利用定電位法,在電位-0.2V(vs.Zn)下沉積鋅,接著於電位1.0V(vs.Zn)下剝除鋅製備而得孔洞型鈀金電極。藉由掃描式顯微鏡(SEM)、元素分析(EDS)、X光繞射儀(XRD)、以及化學分析電子光譜儀(XPS),去探討各種不同條件下製備而得的鈀金孔洞電極。最後將此電極應用在鹼性環境下葡萄糖的催化,並且與相同條件製備下的金和鈀孔洞型電極做個比較。

    In this thesis, the porous Pd-Au bimetallic electrodes have been fabricated conveniently by electrochemical alloying/dealloying of Pd-Au-Zn alloy from a 40-60 mol% ZnCl2-EMIC ionic liquid at the temperature below 150oC. In this work, the cyclic voltammetry(CV) method and chronoamperometry(CA) method were used to fabricate the electrodes. In CV method, the porous Pd-Au electrode was obtained by multiple scan. The potential rang was -0.3 V to 1.0 V (vs. Zn) and the cyclic voltammetric scan rate was 10 mV s-1. During the cathodic process, reducible Zn(II) was electrochemically deposited onto a Pd-Au substrate. During the subsequent anodic process, Zn was removed from the substrate through electrochemical dissolution. In CA method, to prepare the porous Pd-Au bimetallic electrode, the Zn was deposited onto a Pd-Au substrate at -0.2 V (vs. Zn), and immersed in the electrolyte for an hour after deposition process. After that, anodic treatment was conducted at 1.0 V(vs. Zn). Scanning electron microscopy (SEM), energy dispersivespectrometer(EDS), X-ray diffractometer(XRD) and X-ray photo- electron spectroscopy(XPS) were used to characterize the porous Pd-Au bimetallic electrode. Finally, we used the same method to prepare the porous Pd and Au electrodes, respectively. These electrodes were used on glucose electrooxidation to compare results across studies.

    摘要......................................................I 英文摘延伸摘要............................................II 致謝...................................................VIII 目錄.....................................................IX 圖目錄...................................................XI 表目錄..................................................XIV 第一章 緒論..............................................1 1-1 離子液體(ionic liquid)............................1 1-2 ZnCl2–EMIC 融鹽...................................4 1-3 電化學合金/去合金法(Alloying/Dealloying)法.........7 1-4 奈米多孔性金屬材料................................11 1-5 葡萄糖感測器......................................16 1-6 研究動機.........................................21 第二章 實驗原理.........................................22 2-1 循環伏安法(cyclic voltammetry,CV)..................22 2-2 定電位法(chronoamperometry,CA).....................24 第三章 實驗部分...........................................26 3-1 實驗儀器...........................................26 3-2 實驗藥品...........................................30 3-3 溶液配置...........................................31 3-4 實驗步驟...........................................32 3-4-1 金屬基材前處理.....................................32 3-4-2 金屬孔洞材料製備...................................32 3-4-3 利用製備好的金屬孔洞電極偵測葡萄糖...................33 3-4-4 金屬孔洞電極之鑑定.................................34 第四章 結果與討論.........................................35 4-1 鈀金絲電極在40-60mol% ZnCl2-EMIC 中的電化學行為......35 4-2 CV法製備鈀金孔洞電極................................37 4-2-1 鈀金孔洞電極製備之電化學行為探討....................37 4-2-2 掃描圈數對電極孔洞形貌之影響........................39 4-2-3 溫度對電極孔洞形貌之影響............................42 4-2-4 電位對電極孔洞形貌之影響............................44 4-2-5 鈀、金與鈀金電極之比較.............................45 4-3 定電位法製備鈀金孔洞電極.............................47 4-3-1 鈀金孔洞電極的製備.................................47 4-3-2 鋅沉積完後靜置一段時間之影響........................51 4-3-3 溫度對電極孔洞形貌之影響............................52 4-3-4 電量對電極孔洞形貌之影響............................57 4-3-5 鈀、金與鈀金電極之比較.............................61 4-4 鈀金孔洞電極結構鑑定................................65 4-4-1 鈀金孔洞電極X-ray diffraction( XRD)分析............65 4-4-2 鈀金孔洞電極element mapping以及EDS分析.............66 4-4-3 鈀金孔洞電極X-ray photoelectron spectroscopy(XPS) 分析.......................................................70 4-5 葡萄糖的檢測........................................74 第五章 結論..............................................81

    1. Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem Soc Rev 2008, 37 (1), 123-50.
    2. Walden, P. Molecular weights and electrical conductivity of several fused salts. Bull. Russian Acad. Sci 1914, 405–422.
    3. Hurley, F. H.; Wier, J. P. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc. 1951, 98 (5), 203-206.
    4. Carpio, R. A.; King, L. A.; Lindstrom, R. E.; Nardi, J. C.; Hussey, C. L. Density, Electric Conductivity, and Viscosity of Several N-Alkylpyridinium Halides and Their Mixtures with Aluminum Chloride J. EIectrochem. Soc. 1979 126 (10), 1644-1650.
    5. Wilke, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium Chloroaluminate Melts: A New Classof Room-Temperature Ionic Liquids for Electrochemistry,Spectroscopy, and Synthesis. 1982, 21 (3), 1263-1264.
    6. Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun. 1992, 965-967.
    7. Bonhoˆte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gra1tzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salt. Inorg. Chem. 1168-1178, 35, 1168-1178.
    8. Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry 2014, 04 (01), 44-53.
    9. Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev 2008, 108, 206-237.
    10. Seddon, K. R.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry 2000, 72, 2275-2287.
    11. Hsiu, S.-I.; Huang, J.-F.; Sun, I.-W.; Yuan, C.-H.; Shiea, J. Lewis acidity dependency of the electrochemical window of zinc chloride/1-ethyl-3-methylimidazolium chloride ionic liquids. Electrochimica Acta 2002, 47, 4367-4372.
    12. Fannin, A. A.; Jr., D. A. F.; King, L. A.; Landers, J. S.; Piersma, B. J.; Stech, D. J.; Vaughn, R. L.; Wilkes, R. L.; Williams, J. L. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. J. Phys. Chem. 1984, 88 (12), 2614-2621.
    13. C, C.; R, J. Action of acids upon metals and alloys. J. Chem. Soc., Chem. Commun. 1866, 19, 434-454.
    14. AJ, F. Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 1979, 282, 597 - 598.
    15. Erlebacher, J.; Sieradzki, K. Pattern formation during dealloying. Scripta Materialia. 2003, 49 (10), 991-996.
    16. Erlebacher, J. An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. J. Electrochem. Soc. 2004, 151 (10), C614-626.
    17. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450-453.
    18. Fritz, J. D.; Pickering, H. W. Selective Anodic Dissolution of Cu‐Au Alloys: TEM and Current Transient Study. J. Electrochem. Soc. 1991, 138 (11), 3209-3218.
    19. J, S.; K, L.; J, E. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv. Funct. Mater. 2013, 22 (44), 5494–5501.
    20. Scaglione, F.; Celegato, F.; Rizzi, P.; Battezzati, L. A comparison of de-alloying crystalline and amorphous multicomponent Au alloys. Intermetallics 2015, 66, 82-87.
    21. Chen, Q.; Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat Mater 2013, 12 (12), 1102-1106.
    22. Wada, T.; Ichitsubo, T.; Yubuta, K.; Segawa, H.; Yoshida, H.; Kato, H. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 2014, 14 (8), 4505-4510.
    23. McCue, I.; Ryan, S.; Hemker, K.; Xu, X.; Li, N.; Chen, M.; Erlebacher, J. Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying. Advanced Engineering Materials 2016, 18 (1), 46-50.
    24. Chen-Wiegart, Y.-c. K.; Wada, T.; Butakov, N.; Xiao, X.; De Carlo, F.; Kato, H.; Wang, J.; Dunand, D. C.; Maire, E. 3D morphological evolution of porous titanium by x-ray micro- and nano-tomography. Journal of Materials Research 2013, 28 (17), 2444-2452.
    25. McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annual Review of Materials Research 2015.
    26. Erlebacher, J. An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of The Electrochemical Society 2004, 151 (10), C614-C626.
    27. J, S.; J, E. Kinetics of crystal etching limited by terrace dissolution. Journal of The Electrochemical Society 2010, 157 (3), C125-C130.
    28. Zhang, Z.; Wang, Y.; Qi, Z.; Zhang, W.; Qin, J.; Frenzel, J. Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying. J. Phys. Chem. C 2009, 113, 12629–12636.
    29. Qi, Z.; ller, J. r. W. Hierarchical Nested-Network Nanostructure by Dealloying. ACS Nano 2013, 7 (7), 5948–5954.
    30. Nishio, K.; Masuda, H. Anodization of gold in oxalate solution to form a nanoporous black film. Angew Chem Int Ed Engl 2011, 50 (7), 1603-1607.
    31. Jin, B. H.-J.; Kramer, D.; Ivanisenko, Y.; Weissmüller, J. Macroscopically Strong Nanoporous Pt Prepared by Dealloying. Advanced Engineering Materials 2007, 9 (10), 849-854.
    32. Zhang, Z.; Li, J.; Gao, W.; Ma, Y.; Qu, Y. Pt/porous nanorods of ceria as efficient high temperature catalysts with remarkable catalytic stability for carbon dioxide reforming of methane. J. Mater. Chem. A 2015, 3 (35), 18074-18082.
    33. Hayes, J. R.; Hodge, A. M.; Biener, J.; Hamza, A. V. Monolithic nanoporous copper by dealloying Mn–Cu. J. Mater. Res. 2006, 21 (10), 2611-2616.
    34. Dan, Z.; Qin, F.; Sugawara, Y.; Muto, I.; Hara, N. Fabrication of nanoporous copper by dealloying amorphous binary TieCu alloys in hydrofluoric acid solutions. Intermetallics 2012, 29, 14-20.
    35. Zhang, Q.; Large, N.; Nordlander, P.; Wang, H. Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. J. Phys. Chem. Lett. 2014, 5 (2), 370-374.
    36. Volkert, C. A.; Lilleodden, E. T.; Kramer, D.; Weissmüller, J. Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett 2006, 89 (6).
    37. Ye, X.-L.; Jin, H.-J. Electrochemical control of creep in nanoporous gold. Appl. Phys. Lett 2013, 103 ((20):201912).
    38. Li, G.; Song, X.; Sun, Z.; Yang, S.; Ding, B.; Yang, S.; Yang, Z.; Wang, F. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys. Solid State Sciences 2011, 13, 1379-1384.
    39. He, J.; Kunitake, T.; Watanabe, T. Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template. Chem Commun (Camb) 2005, (6), 795-796.
    40. Nascimento, M. A. C. Theoretical aspects of heterogeneous catalysis. Kluwer Academic 2001, 8.
    41. SCHWA, G.-M. Alloy catalysts in dehydrogenation. Discussions of the Faraday Society 1950, 8, 166-171.
    42. Sinfelt, J. H. Catalysis by alloys and bimetallic clusters. Acc. Chem. Res 1977, 10 (1), 15-20.
    43. Yi, C.-W.; Luo, K.; Wei, T.; Goodman, D. W. The Composition and Structure of Pd-Au Surfaces. 2005, 109, 18535-18540.
    44. Sinfelt, J. H.; Sons, J. W. Bimetallic catalysts: Discoveries, concepts, and applications. . Wiley-Interscience 1983.
    45. Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science submitted. 2005, 310 (5746), 291-293.
    46. Zhang, J.; Liu, P.; Ma, H.; Ding, Y. Nanostructured Porous Gold for Methanol Electro-Oxidation. J. Phys. Chem. C 2007, 111, 10382-10388.
    47. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007, 315 (5809), 220-222.
    48. A, A.; C., V. a. R.; Newman. Nanoporous Metals Fabricated through Electrochemical Dealloying of Ag-Au-Pt with Systematic Variation of Au:Pt Ratio. Journal of The Electrochemical Society 2014, 161 (1), C1-C10.
    49. Lu, Q.; Hutchings, G. S.; Yu, W.; Zhou, Y.; Forest, R. V.; Tao, R.; Rosen, J.; Yonemoto, B. T.; Cao, Z.; Zheng, H.; Xiao, J. Q.; Jiao, F.; Chen, J. G. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 2015, 6 (6567), 1-8.
    50. Tominaga, M.; Shimazoe, T.; Nagashima, M.; Kusuda, H.; Kubo, A.; Kuwahara, Y.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution. Journal of Electroanalytical Chemistry 2006, 590 (1), 37-46.
    51. Tokonami, S.; Morita, N.; Takasaki, K.; Toshima, N. Novel Synthesis, Structure, and Oxidation Catalysis of Ag/Au Bimetallic Nanoparticles. J. Phys. Chem. C 2010, 114, 10336–10341.
    52. Niu, X.; Lan, M.; Chen, C.; Zhao, H. Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta 2012, 99, 1062-1067.
    53. Niu, X.; Chen, C.; Zhao, H.; Chai, Y.; Lan, M. Novel snowflake-like Pt-Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose sensing. Biosens Bioelectron 2012, 36 (1), 262-266.
    54. Brouzgou, A.; Yan, L. L.; Song, S. Q.; Tsiakaras, P. Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Applied Catalysis B: Environmental 2014, 147, 481-489.
    55. Basu, D.; Sood, S.; Basu, S. Performance comparison of Pt–Au/C and Pt–Bi/C anode catalysts in batch and continuous direct glucose alkaline fuel cell. Chemical Engineering Journal 2013, 228, 867-870.
    56. Basu, D.; Basu, S. Mathematical modeling of overpotentials of direct glucose alkaline fuel cell and experimental validation. Journal of Solid State Electrochemistry 2013, 17 (11), 2927-2938.
    57. Wang, J.; Gao, H.; Sun, F.; Xu, C. Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors and Actuators B: Chemical 2014, 191, 612-618.
    58. Zhang, H.; Lu, L.; Cao, Y.; Du, S.; Cheng, Z.; Zhang, S. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4. Materials Research Bulletin 2014, 49, 393-398.
    59. Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y.-P. Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation. Nano Letters 2002, 2 (4), 311-314.
    60. Law, W. T.; Doshi, S.; McGeehan, J.; McGeehan, S.; Gibboni, D.; Nikolioukine, Y.; Keane, R.; Zheng, J.; Rao, J.; Ertingshausen, G. Whole-blood test for total cholesterol by a self-metering, self-timing disposable device with built-in quality control. Clinical Chemistry 1997, 384-389.
    61. Wang, J. Chem. Rev. Electrochemical Glucose Biosensors, 108 (2), 814-825.
    62. Jr., L. C. C.; Lyons, C. ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. 102, 29-45.
    63. Gough, D. A.; Lucisano, J. Y.; Tse, P. H. S. Two-dimensional enzyme electrode sensor for glucose. Anal. Chem. 1985, 57 (12), 2351–2357.
    64. JC, A.; JY, L.; BD, M.; DA., G. Application of chronic intravascular blood glucose sensor in dogs. Diabetes 1990, 39 (12), 1519-1526.
    65. Wilson, R.; Turner, A. P. F. Glucose oxidase: an ideal enzyme. Biosensors t Biwlecrronia 1992, 7, 165-185.
    66. Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 2007, 369 (1), 71-79.
    67. Tang, H.; Chen, J.; Yao, S.; Nie, L.; Deng, G.; Kuang, Y. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal Biochem 2004, 331 (1), 89-97.
    68. Bharathi, S.; Nogami, M. A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst 2001, 126, 1919-1922.
    69. Bahshi, L.; Frasconi, M.; Tel-Vered, R.; Yehezkeli, O.; Willner, I. Following the Biocatalytic Activities of Glucose Oxidase by Electrochemically Cross-Linked Enzyme−Pt Nanoparticles Composite Electrodes. Anal. Chem. 2008, 80 (21), 8253-8259.
    70. Li, J.; Lin, X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 2007, 22 (12), 2898-905.
    71. Park, S.; Chung, T. D.; Kim, H. C. Nonenzymatic Glucose Detection Using Mesoporous Platinum. Anal. Chem. 2003, 75, 3046-3049.
    72. Bai, Y.; Sun, Y.; Sun∗, C. Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosensors and Bioelectronics 2008, 24, 579-585.
    73. Huang, J.-F.; Sun, I.-W. Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloying/Dealloying of Au–Zn in an Ionic Liquid, and the Self-Assembly of L-Cysteine Monolayers. Advanced Functional Materials 2005, 15 (6), 989–994.
    74. Pia, G.; Delogu, F. Coarsening of nanoporous Au: Relationship between structure and mechanical properties. Acta Materialia 2015, 99, 29-38.
    75. Kertis, F.; Snyder, J.; Govada, L.; Khurshid, S.; Chayen, N.; Erlebacher, J. Structure/processing relationships in the fabrication of nanoporous gold. Corrosion Overview 2010, 62 (6), 50-56.
    76. Y. Ding; Y.-J. Kim; Erlebacher, J. Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material. Advanced Materials 2004, 16 (21), 1897–1900.
    77. Cai, Z.-x.; Liu, C.-c.; Wu, G.-h.; Chen, X.-m.; Chen, X. Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose. Electrochimica Acta 2013, 112, 756-762.
    78. Jin, C.; Taniguchi, I. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Materials Letters 2007, 61 (11-12), 2365-2367.
    79. Wang, H.; Yamauchi, Y. Synthesis of mesoporous platinum-palladium alloy films by electrochemical plating in aqueous surfactant solutions. Chem Asian J 2012, 7 (9), 2133-2138.
    80. Wang, H.; Imura, M.; Nemoto, Y.; Wang, L.; Jeong, H. Y.; Yokoshima, T.; Terasaki, O.; Yamauchi, Y. Electrochemical design of mesoporous Pt-Ru alloy films with various compositions toward superior electrocatalytic performance. Chemistry 2012, 18 (41), 13142-13148.
    81. Bard, A. J.; Faulkner, L. R. Electrochemical Methods:Fundamentals and Applications. 2001.
    82. Huang, J.-F.; Sun, I.-W. Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloying/Dealloying of Au–Zn in an Ionic Liquid, and the Self-Assembly of L-Cysteine Monolayers. 15 ( 6), 989–994.
    83. Jiang, J.; Zhang, L.; Wang, X. Nanopatterning palladium surface layers through electrochemical deposition and dissolution of zinc in ionic liquid. ACS Appl Mater Interfaces 2013, 5 (23), 12689-94.
    84. Lu, L.; Wu, G.; Dong, Y.; Wang, J.; Bai, G. Green and facile preparation of self-supporting nanoporous gold electrode and effect of ionic liquids on its electrocatalytic oxidation toward glucose. Journal of Porous Materials 2016, 23 (3), 671-678.
    85. Beszeda, I.; Gontier-Moya, E. G.; Beke, D. L. Investigation of mass transfer surface self-diffusion on palladium. Surface Science 2003, 547, 229-238.
    86. Seebauer, E. G.; Allen, C. E. Estimating Surface Diffusion Coefficients. Prog. Surf. Sci. 1995, 49, 265-330.
    87. Hu, C.-C.; WEN, T.-C. VOLTAMMETRIC INVESTIGATION OF PALLADIUM OXIDES-I: THEIR FORMATION/REDUCTION IN NaOH. Ekctrochimrca Acro, 1995, 40 (4), 495-503.
    88. Vandeberg, P. J.; *, D. C. J. A study of the voltammetric response of thiourea and ethylene thiourea at gold electrodes in alkaline media. Joumal of Electroanalytical Chemistry 1993, 362, 129-139
    89. Basu, D.; Basu, S. Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. International Journal of Hydrogen Energy 2012, 37 (5), 4678-4684.
    90. Yan, L.; Brouzgou, A.; Meng, Y.; Xiao, M.; Tsiakaras, P.; Song, S. Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental 2014, 150-151, 268-274.

    無法下載圖示 校內:2019-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE