| 研究生: |
邱浩宇 Ciou, Hao-Yu |
|---|---|
| 論文名稱: |
在離子液體中製備孔洞型鈀金雙金屬電極應用於葡萄糖電催化 Preparation of porous Pd-Au in Ionic Liquid for glucose electrooxidation |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 離子液體 、奈米孔洞 、葡萄糖 、電催化 |
| 外文關鍵詞: | ionic liquid, nanoporous, glucose, electrocatalysis |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在ZnCl2-EMIC離子液體中,利用電化學合金/去合金法在低於150oC以下的溫度製備出孔洞型鈀金雙金屬電極,藉由將鋅沉積於鈀金電極表面得到鈀金鋅合金,再將鋅剝除後即可得到孔洞型鈀金電極。分為循環伏安法(CV)法以及定電位法(CA)法兩種方式製備,CV法是利用循環伏安法多圈數掃描,在慢掃速10 mV s-1,電位範圍-0.3V~1.0V(vs.Zn)下,重複的沉積/剝除鋅後而製備孔洞形鈀金電極;CA法是利用定電位法,在電位-0.2V(vs.Zn)下沉積鋅,接著於電位1.0V(vs.Zn)下剝除鋅製備而得孔洞型鈀金電極。藉由掃描式顯微鏡(SEM)、元素分析(EDS)、X光繞射儀(XRD)、以及化學分析電子光譜儀(XPS),去探討各種不同條件下製備而得的鈀金孔洞電極。最後將此電極應用在鹼性環境下葡萄糖的催化,並且與相同條件製備下的金和鈀孔洞型電極做個比較。
In this thesis, the porous Pd-Au bimetallic electrodes have been fabricated conveniently by electrochemical alloying/dealloying of Pd-Au-Zn alloy from a 40-60 mol% ZnCl2-EMIC ionic liquid at the temperature below 150oC. In this work, the cyclic voltammetry(CV) method and chronoamperometry(CA) method were used to fabricate the electrodes. In CV method, the porous Pd-Au electrode was obtained by multiple scan. The potential rang was -0.3 V to 1.0 V (vs. Zn) and the cyclic voltammetric scan rate was 10 mV s-1. During the cathodic process, reducible Zn(II) was electrochemically deposited onto a Pd-Au substrate. During the subsequent anodic process, Zn was removed from the substrate through electrochemical dissolution. In CA method, to prepare the porous Pd-Au bimetallic electrode, the Zn was deposited onto a Pd-Au substrate at -0.2 V (vs. Zn), and immersed in the electrolyte for an hour after deposition process. After that, anodic treatment was conducted at 1.0 V(vs. Zn). Scanning electron microscopy (SEM), energy dispersivespectrometer(EDS), X-ray diffractometer(XRD) and X-ray photo- electron spectroscopy(XPS) were used to characterize the porous Pd-Au bimetallic electrode. Finally, we used the same method to prepare the porous Pd and Au electrodes, respectively. These electrodes were used on glucose electrooxidation to compare results across studies.
1. Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem Soc Rev 2008, 37 (1), 123-50.
2. Walden, P. Molecular weights and electrical conductivity of several fused salts. Bull. Russian Acad. Sci 1914, 405–422.
3. Hurley, F. H.; Wier, J. P. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc. 1951, 98 (5), 203-206.
4. Carpio, R. A.; King, L. A.; Lindstrom, R. E.; Nardi, J. C.; Hussey, C. L. Density, Electric Conductivity, and Viscosity of Several N-Alkylpyridinium Halides and Their Mixtures with Aluminum Chloride J. EIectrochem. Soc. 1979 126 (10), 1644-1650.
5. Wilke, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium Chloroaluminate Melts: A New Classof Room-Temperature Ionic Liquids for Electrochemistry,Spectroscopy, and Synthesis. 1982, 21 (3), 1263-1264.
6. Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun. 1992, 965-967.
7. Bonhoˆte, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gra1tzel, M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salt. Inorg. Chem. 1168-1178, 35, 1168-1178.
8. Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry 2014, 04 (01), 44-53.
9. Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev 2008, 108, 206-237.
10. Seddon, K. R.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry 2000, 72, 2275-2287.
11. Hsiu, S.-I.; Huang, J.-F.; Sun, I.-W.; Yuan, C.-H.; Shiea, J. Lewis acidity dependency of the electrochemical window of zinc chloride/1-ethyl-3-methylimidazolium chloride ionic liquids. Electrochimica Acta 2002, 47, 4367-4372.
12. Fannin, A. A.; Jr., D. A. F.; King, L. A.; Landers, J. S.; Piersma, B. J.; Stech, D. J.; Vaughn, R. L.; Wilkes, R. L.; Williams, J. L. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. J. Phys. Chem. 1984, 88 (12), 2614-2621.
13. C, C.; R, J. Action of acids upon metals and alloys. J. Chem. Soc., Chem. Commun. 1866, 19, 434-454.
14. AJ, F. Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 1979, 282, 597 - 598.
15. Erlebacher, J.; Sieradzki, K. Pattern formation during dealloying. Scripta Materialia. 2003, 49 (10), 991-996.
16. Erlebacher, J. An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. J. Electrochem. Soc. 2004, 151 (10), C614-626.
17. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450-453.
18. Fritz, J. D.; Pickering, H. W. Selective Anodic Dissolution of Cu‐Au Alloys: TEM and Current Transient Study. J. Electrochem. Soc. 1991, 138 (11), 3209-3218.
19. J, S.; K, L.; J, E. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv. Funct. Mater. 2013, 22 (44), 5494–5501.
20. Scaglione, F.; Celegato, F.; Rizzi, P.; Battezzati, L. A comparison of de-alloying crystalline and amorphous multicomponent Au alloys. Intermetallics 2015, 66, 82-87.
21. Chen, Q.; Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat Mater 2013, 12 (12), 1102-1106.
22. Wada, T.; Ichitsubo, T.; Yubuta, K.; Segawa, H.; Yoshida, H.; Kato, H. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 2014, 14 (8), 4505-4510.
23. McCue, I.; Ryan, S.; Hemker, K.; Xu, X.; Li, N.; Chen, M.; Erlebacher, J. Size Effects in the Mechanical Properties of Bulk Bicontinuous Ta/Cu Nanocomposites Made by Liquid Metal Dealloying. Advanced Engineering Materials 2016, 18 (1), 46-50.
24. Chen-Wiegart, Y.-c. K.; Wada, T.; Butakov, N.; Xiao, X.; De Carlo, F.; Kato, H.; Wang, J.; Dunand, D. C.; Maire, E. 3D morphological evolution of porous titanium by x-ray micro- and nano-tomography. Journal of Materials Research 2013, 28 (17), 2444-2452.
25. McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annual Review of Materials Research 2015.
26. Erlebacher, J. An Atomistic Description of Dealloying Porosity Evolution, the Critical Potential, and Rate-Limiting Behavior. Journal of The Electrochemical Society 2004, 151 (10), C614-C626.
27. J, S.; J, E. Kinetics of crystal etching limited by terrace dissolution. Journal of The Electrochemical Society 2010, 157 (3), C125-C130.
28. Zhang, Z.; Wang, Y.; Qi, Z.; Zhang, W.; Qin, J.; Frenzel, J. Generalized Fabrication of Nanoporous Metals (Au, Pd, Pt, Ag, and Cu) through Chemical Dealloying. J. Phys. Chem. C 2009, 113, 12629–12636.
29. Qi, Z.; ller, J. r. W. Hierarchical Nested-Network Nanostructure by Dealloying. ACS Nano 2013, 7 (7), 5948–5954.
30. Nishio, K.; Masuda, H. Anodization of gold in oxalate solution to form a nanoporous black film. Angew Chem Int Ed Engl 2011, 50 (7), 1603-1607.
31. Jin, B. H.-J.; Kramer, D.; Ivanisenko, Y.; Weissmüller, J. Macroscopically Strong Nanoporous Pt Prepared by Dealloying. Advanced Engineering Materials 2007, 9 (10), 849-854.
32. Zhang, Z.; Li, J.; Gao, W.; Ma, Y.; Qu, Y. Pt/porous nanorods of ceria as efficient high temperature catalysts with remarkable catalytic stability for carbon dioxide reforming of methane. J. Mater. Chem. A 2015, 3 (35), 18074-18082.
33. Hayes, J. R.; Hodge, A. M.; Biener, J.; Hamza, A. V. Monolithic nanoporous copper by dealloying Mn–Cu. J. Mater. Res. 2006, 21 (10), 2611-2616.
34. Dan, Z.; Qin, F.; Sugawara, Y.; Muto, I.; Hara, N. Fabrication of nanoporous copper by dealloying amorphous binary TieCu alloys in hydrofluoric acid solutions. Intermetallics 2012, 29, 14-20.
35. Zhang, Q.; Large, N.; Nordlander, P.; Wang, H. Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS. J. Phys. Chem. Lett. 2014, 5 (2), 370-374.
36. Volkert, C. A.; Lilleodden, E. T.; Kramer, D.; Weissmüller, J. Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett 2006, 89 (6).
37. Ye, X.-L.; Jin, H.-J. Electrochemical control of creep in nanoporous gold. Appl. Phys. Lett 2013, 103 ((20):201912).
38. Li, G.; Song, X.; Sun, Z.; Yang, S.; Ding, B.; Yang, S.; Yang, Z.; Wang, F. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys. Solid State Sciences 2011, 13, 1379-1384.
39. He, J.; Kunitake, T.; Watanabe, T. Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template. Chem Commun (Camb) 2005, (6), 795-796.
40. Nascimento, M. A. C. Theoretical aspects of heterogeneous catalysis. Kluwer Academic 2001, 8.
41. SCHWA, G.-M. Alloy catalysts in dehydrogenation. Discussions of the Faraday Society 1950, 8, 166-171.
42. Sinfelt, J. H. Catalysis by alloys and bimetallic clusters. Acc. Chem. Res 1977, 10 (1), 15-20.
43. Yi, C.-W.; Luo, K.; Wei, T.; Goodman, D. W. The Composition and Structure of Pd-Au Surfaces. 2005, 109, 18535-18540.
44. Sinfelt, J. H.; Sons, J. W. Bimetallic catalysts: Discoveries, concepts, and applications. . Wiley-Interscience 1983.
45. Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science submitted. 2005, 310 (5746), 291-293.
46. Zhang, J.; Liu, P.; Ma, H.; Ding, Y. Nanostructured Porous Gold for Methanol Electro-Oxidation. J. Phys. Chem. C 2007, 111, 10382-10388.
47. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007, 315 (5809), 220-222.
48. A, A.; C., V. a. R.; Newman. Nanoporous Metals Fabricated through Electrochemical Dealloying of Ag-Au-Pt with Systematic Variation of Au:Pt Ratio. Journal of The Electrochemical Society 2014, 161 (1), C1-C10.
49. Lu, Q.; Hutchings, G. S.; Yu, W.; Zhou, Y.; Forest, R. V.; Tao, R.; Rosen, J.; Yonemoto, B. T.; Cao, Z.; Zheng, H.; Xiao, J. Q.; Jiao, F.; Chen, J. G. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 2015, 6 (6567), 1-8.
50. Tominaga, M.; Shimazoe, T.; Nagashima, M.; Kusuda, H.; Kubo, A.; Kuwahara, Y.; Taniguchi, I. Electrocatalytic oxidation of glucose at gold–silver alloy, silver and gold nanoparticles in an alkaline solution. Journal of Electroanalytical Chemistry 2006, 590 (1), 37-46.
51. Tokonami, S.; Morita, N.; Takasaki, K.; Toshima, N. Novel Synthesis, Structure, and Oxidation Catalysis of Ag/Au Bimetallic Nanoparticles. J. Phys. Chem. C 2010, 114, 10336–10341.
52. Niu, X.; Lan, M.; Chen, C.; Zhao, H. Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta 2012, 99, 1062-1067.
53. Niu, X.; Chen, C.; Zhao, H.; Chai, Y.; Lan, M. Novel snowflake-like Pt-Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose sensing. Biosens Bioelectron 2012, 36 (1), 262-266.
54. Brouzgou, A.; Yan, L. L.; Song, S. Q.; Tsiakaras, P. Glucose electrooxidation over PdxRh/C electrocatalysts in alkaline medium. Applied Catalysis B: Environmental 2014, 147, 481-489.
55. Basu, D.; Sood, S.; Basu, S. Performance comparison of Pt–Au/C and Pt–Bi/C anode catalysts in batch and continuous direct glucose alkaline fuel cell. Chemical Engineering Journal 2013, 228, 867-870.
56. Basu, D.; Basu, S. Mathematical modeling of overpotentials of direct glucose alkaline fuel cell and experimental validation. Journal of Solid State Electrochemistry 2013, 17 (11), 2927-2938.
57. Wang, J.; Gao, H.; Sun, F.; Xu, C. Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors and Actuators B: Chemical 2014, 191, 612-618.
58. Zhang, H.; Lu, L.; Cao, Y.; Du, S.; Cheng, Z.; Zhang, S. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4. Materials Research Bulletin 2014, 49, 393-398.
59. Huang, W.; Taylor, S.; Fu, K.; Lin, Y.; Zhang, D.; Hanks, T. W.; Rao, A. M.; Sun, Y.-P. Attaching Proteins to Carbon Nanotubes via Diimide-Activated Amidation. Nano Letters 2002, 2 (4), 311-314.
60. Law, W. T.; Doshi, S.; McGeehan, J.; McGeehan, S.; Gibboni, D.; Nikolioukine, Y.; Keane, R.; Zheng, J.; Rao, J.; Ertingshausen, G. Whole-blood test for total cholesterol by a self-metering, self-timing disposable device with built-in quality control. Clinical Chemistry 1997, 384-389.
61. Wang, J. Chem. Rev. Electrochemical Glucose Biosensors, 108 (2), 814-825.
62. Jr., L. C. C.; Lyons, C. ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. 102, 29-45.
63. Gough, D. A.; Lucisano, J. Y.; Tse, P. H. S. Two-dimensional enzyme electrode sensor for glucose. Anal. Chem. 1985, 57 (12), 2351–2357.
64. JC, A.; JY, L.; BD, M.; DA., G. Application of chronic intravascular blood glucose sensor in dogs. Diabetes 1990, 39 (12), 1519-1526.
65. Wilson, R.; Turner, A. P. F. Glucose oxidase: an ideal enzyme. Biosensors t Biwlecrronia 1992, 7, 165-185.
66. Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 2007, 369 (1), 71-79.
67. Tang, H.; Chen, J.; Yao, S.; Nie, L.; Deng, G.; Kuang, Y. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal Biochem 2004, 331 (1), 89-97.
68. Bharathi, S.; Nogami, M. A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst 2001, 126, 1919-1922.
69. Bahshi, L.; Frasconi, M.; Tel-Vered, R.; Yehezkeli, O.; Willner, I. Following the Biocatalytic Activities of Glucose Oxidase by Electrochemically Cross-Linked Enzyme−Pt Nanoparticles Composite Electrodes. Anal. Chem. 2008, 80 (21), 8253-8259.
70. Li, J.; Lin, X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 2007, 22 (12), 2898-905.
71. Park, S.; Chung, T. D.; Kim, H. C. Nonenzymatic Glucose Detection Using Mesoporous Platinum. Anal. Chem. 2003, 75, 3046-3049.
72. Bai, Y.; Sun, Y.; Sun∗, C. Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosensors and Bioelectronics 2008, 24, 579-585.
73. Huang, J.-F.; Sun, I.-W. Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloying/Dealloying of Au–Zn in an Ionic Liquid, and the Self-Assembly of L-Cysteine Monolayers. Advanced Functional Materials 2005, 15 (6), 989–994.
74. Pia, G.; Delogu, F. Coarsening of nanoporous Au: Relationship between structure and mechanical properties. Acta Materialia 2015, 99, 29-38.
75. Kertis, F.; Snyder, J.; Govada, L.; Khurshid, S.; Chayen, N.; Erlebacher, J. Structure/processing relationships in the fabrication of nanoporous gold. Corrosion Overview 2010, 62 (6), 50-56.
76. Y. Ding; Y.-J. Kim; Erlebacher, J. Nanoporous Gold Leaf: “Ancient Technology”/Advanced Material. Advanced Materials 2004, 16 (21), 1897–1900.
77. Cai, Z.-x.; Liu, C.-c.; Wu, G.-h.; Chen, X.-m.; Chen, X. Palladium nanoparticles deposit on multi-walled carbon nanotubes and their catalytic applications for electrooxidation of ethanol and glucose. Electrochimica Acta 2013, 112, 756-762.
78. Jin, C.; Taniguchi, I. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells. Materials Letters 2007, 61 (11-12), 2365-2367.
79. Wang, H.; Yamauchi, Y. Synthesis of mesoporous platinum-palladium alloy films by electrochemical plating in aqueous surfactant solutions. Chem Asian J 2012, 7 (9), 2133-2138.
80. Wang, H.; Imura, M.; Nemoto, Y.; Wang, L.; Jeong, H. Y.; Yokoshima, T.; Terasaki, O.; Yamauchi, Y. Electrochemical design of mesoporous Pt-Ru alloy films with various compositions toward superior electrocatalytic performance. Chemistry 2012, 18 (41), 13142-13148.
81. Bard, A. J.; Faulkner, L. R. Electrochemical Methods:Fundamentals and Applications. 2001.
82. Huang, J.-F.; Sun, I.-W. Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloying/Dealloying of Au–Zn in an Ionic Liquid, and the Self-Assembly of L-Cysteine Monolayers. 15 ( 6), 989–994.
83. Jiang, J.; Zhang, L.; Wang, X. Nanopatterning palladium surface layers through electrochemical deposition and dissolution of zinc in ionic liquid. ACS Appl Mater Interfaces 2013, 5 (23), 12689-94.
84. Lu, L.; Wu, G.; Dong, Y.; Wang, J.; Bai, G. Green and facile preparation of self-supporting nanoporous gold electrode and effect of ionic liquids on its electrocatalytic oxidation toward glucose. Journal of Porous Materials 2016, 23 (3), 671-678.
85. Beszeda, I.; Gontier-Moya, E. G.; Beke, D. L. Investigation of mass transfer surface self-diffusion on palladium. Surface Science 2003, 547, 229-238.
86. Seebauer, E. G.; Allen, C. E. Estimating Surface Diffusion Coefficients. Prog. Surf. Sci. 1995, 49, 265-330.
87. Hu, C.-C.; WEN, T.-C. VOLTAMMETRIC INVESTIGATION OF PALLADIUM OXIDES-I: THEIR FORMATION/REDUCTION IN NaOH. Ekctrochimrca Acro, 1995, 40 (4), 495-503.
88. Vandeberg, P. J.; *, D. C. J. A study of the voltammetric response of thiourea and ethylene thiourea at gold electrodes in alkaline media. Joumal of Electroanalytical Chemistry 1993, 362, 129-139
89. Basu, D.; Basu, S. Performance studies of Pd–Pt and Pt–Pd–Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. International Journal of Hydrogen Energy 2012, 37 (5), 4678-4684.
90. Yan, L.; Brouzgou, A.; Meng, Y.; Xiao, M.; Tsiakaras, P.; Song, S. Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Applied Catalysis B: Environmental 2014, 150-151, 268-274.
校內:2019-07-08公開