簡易檢索 / 詳目顯示

研究生: 鄭至韋
Cheng, Chih-Wei
論文名稱: 鈦酸鹽結構合成之奈米二氧化鈦銳鈦礦於染料敏化太陽能電池之應用
Nanocrystalline anatase TiO2 derived from a titanate-directed route for dye-sensitized solar cells
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 105
中文關鍵詞: 奈米結晶銳鈦礦二氧化鈦染料敏化太陽能電池水熱處理溶膠凝膠法鈦酸鹽
外文關鍵詞: nanocrystalline, hydrothermal treatment, sol-gel, anatase TiO2, dye-sensitized solar cells, titanate
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應用在許多方面的二氧化鈦奈米顆粒,ㄧ般採用溶膠凝膠法製備而得。在溶膠凝膠法的製備上,由於不同的製備情況,所得到的二氧化鈦可能具有銳鈦礦(anatase)、金紅石(rutile)和板鈦礦(brookite)三種結晶相。在本實驗,我們發展一套有別於ㄧ般溶膠凝膠法的獨特製程方法,製備出有利於電子輸送以及避免電荷產生再結合,當做染料敏化太陽能電池電極材料的高純度銳鈦礦二氧化鈦膠體。在我們發展的製程中,以TiO6八面體排列形成zigzag結構的鈦酸鹽當做中間產物,zigzag結構也是銳鈦礦二氧化鈦的特徵。由XRD以及Raman的結果得知,以我們發展的製程製備出二氧化鈦膠體為純銳鈦礦。相對地,在相同溫度下,以溶膠凝膠法製備出的二氧化鈦主要成分為銳鈦礦以及少量的金紅石和板鈦礦。由於高純度銳鈦礦,我們以方向性鈦酸鹽製程所製備出二氧化鈦膠體來製作中孔薄膜,應用在染料敏化太陽能電池上有非常好的表現。

    TiO2 nanoparticles used in numerous applications are generally prepared from the sol-gel method. Because of the different preparation conditions, formation of the three TiO2 polymorphs, anatase, brookite and rutile, in the sol-gel synthesis. The present work demonstrates a unique route, alternative to the conventional sol-gel method, to prepare high-purity anatase TiO2 colloids, which can be deposited as electrodes for dye-sensitized solar cells to facilitate electron transport and avoid charge recombination. In this developed route, a titanate with its TiO6 octahedra arranged in a zigzag configuration, which is also a characteristic feature of anatase TiO2, is produced as an intermediate. XRD and Raman analysis shows that a phase-pure anatase TiO2 colloid is prepared from the developed route, while the TiO2 derived from the sol-gel at the same temperature is predominantly composed of anatase with the presence of a minute amount of rutile and brookite. Because of the high-purity in anatase phase, the TiO2 colloid derived from the titanate-directed route is shown to constitute a mesoporous film exhibiting high performance in a dye-sensitized solar cell.

    目錄 中文摘要.................................I Abstract..............................II 誌謝  .................................III 目錄  .................................IV 圖目錄 .................................VII 表目錄 .................................X 第一章 緒論 ...............................1   1-1 前言 ..............................1   1-2 市場上不同型態的太陽能電池 ...................3   1-3 研究背景與目的 .........................9 第二章 文獻回顧與理論說明 ........................10   2-1 染料敏化太陽能電池 .......................10   2-2 奈米結晶多孔膜電極(nanocrystalline porous electrode) ......14   2-3 染料敏化劑 ...........................18   2-4 氧化還原電解質 .........................27   2-5 相對電極 ............................30   2-6 BET和BJH理論 ..........................31   2-7 拉曼散射原理 ..........................35 第三章 實驗方法 .............................38   3-1 藥品器材 ............................38   3-2 實驗設備 ............................39   3-3 TiO2奈米顆粒Paste的製作與相關測試 ................41    3-3.1 水熱法合成二氧化鈦奈米顆粒Paste ..............42    3-3.2 溶膠凝膠法(Sol-Gel)合成二氧化鈦奈米顆粒Paste ........44    3-3.3 利用Degussa P25製備Paste  ..................46    3-3.4 氮氣物理吸脫附實驗 .....................46    3-3.5 XRD繞射分析 .........................47    3-3.6 SEM結構分析 .........................48    3-3.7 TEM微結構分析 ........................48    3-3.8 RAMAN分析 ..........................48   3-4 染料敏化太陽能電池 ........................49    3-4.1 二氧化鈦薄膜光電極製備 ...................50    3-4.2 薄膜厚度測定 ........................50    3-4.3 染料吸附 ..........................50    3-4.4 電解質配製 .........................51    3-4.5 相對電極製作 ........................51    3-4.6 太陽能電池組裝 .......................51   3-5 電池光電轉化效率測試 .......................53 第四章 結果與討論 ............................56   4-1 二氧化鈦特性分析 .........................57    4-1.1 XRD分析 ...........................57    4-1.2 TEM微結構分析 ........................65    4-1.3 氮氣吸脫附實驗 .......................70    4-1.4 SEM分析 ...........................74    4-1.5 RAMAN分析 ..........................81   4-2 染料敏化太陽能電池特性分析 ...................83    4-2.1 奈米薄膜光電極特徵 .....................83    4-2.2 染料敏化太陽能電池之表現 ..................86 第五章 結論與建議 ............................97   5-1 結論 ..............................97   5-2 建議 ..............................99 第六章 參考文獻 .............................100

    [1] 劉世忠, “越熱越來電的太陽能電池”, 產經資訊, 9, 33-36, (2003).
    [2] 楊素華, 蔡泰成, “太陽能電池”, 科學發展, 390, 51-55, (2005).
    [3] 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86.
    [4] 張品全, “太陽電池”, 科學發展, 349, 22, (2002).
    [5] 吳財福、張健軒、陳裕愷, “太陽能供電與照明系統綜論”, 全華, 台北市, 第     二章, 民89.
    [6] 王釿鋊, “染料半導體光電池”, 中技社通訊, 41, 5, (2002).
    [7] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 164, 3-14, (2004).
    [8] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053-2059, (2000).
    [9] D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 119-155, (1996).
    [10] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc., 80, 3157-3171, (1997).
    [11] A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 95, 49-68, (1995).
    [12] K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. rev., 177, 347-414, (1998).
    [13] N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989-8994, (2000).
    [14] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382-6390, (1993).
    [15] G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 75, 752-756, (1998).
    [16] M. Grätzel, “Dye-sensitized solar cells”, J. Photochem. Photobio. C, 4, 145-153, (2003).
    [17] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell”, Coord. Chem. rev., 248, 1381-1389, (2004).
    [18] Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, “Significant Efficiency Improvement of the Black Dye-Sensitized Solar Cell through Protonation of TiO2 Films”, Langmuir, 21, 4272-4276, (2005).
    [19] G. J. Meyer, “Efficient Light-to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 74, 652-656, (1997).
    [20] P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chem. Commun., 2972–2973, (2002).
    [21] E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 15, 1825-1829, (2003).
    [22] P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane, M.Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell”, J. Am. Chem. Soc., 126, 13590-13591, (2004).
    [23] N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst For Aqueous and Organic Media”, J. Electrochem. Soc., 144, 876-884, (1997).
    [24] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99-117, (1996).
    [25] S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 309, (1938).
    [26] E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., 73, 373-380, (1951).
    [27] C. Karr, “Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals”, (1975).
    [28] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, 3160-3163, (1998).
    [29] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11, 1307-1311, (1999).
    [30] C.-C. Tsai, H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments”, Chem. Mater., 18, 367-373, (2006).
    [31] G. J. Wilson, G. D. Will, R. L. Frost, S. A. Montgomery, ‘‘Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO2 colloids’’, J. Mater. Chem., 12, 1787-1791, (2002).
    [32] S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić, K. Furić, “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure”, Mater. Sci. Eng. B, 47, 33-40, (1997).
    [33] L. Kavan, M. Grätzel, J. Rathouský, A. Zukal, “Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties”, J. Electrochem. Soc., 143, 394-400, (1996).
    [34] C. A. Melendres, A. Narayanasamy, V. A. Maroni, R. W. Seigel, “Raman spectroscopy of nanophase TiO2”, J. Mater. Res., 4, 1246-1250, (1989).
    [35] J. C. Parker, R. W. Seigel, “Raman microprobe study of nanophase titania and oxidation-induced spectral changes”, J. Mater. Res., 5, 1246-1252, (1990).
    [36] M. Gotić, M. Ivanda, S. Popović, S. Musić, A. Sekulić, A. Turković, K. J. Furić, “Raman investigation of nanosized TiO2”, J. Raman Spectrosc., 28, 555-558., (1997).
    [37] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Sol. Energy Mater. Sol. Cells, 70, 151-161, (2001).
    [38] S. Y. Huang, G. Schlichtho1rl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101, 2576-2582, (1997).
    [39] A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements”, CHEMPHYSCHEM, 4, 859-864, (2003).
    [40] T. Y. Peng, A. Hasegawa, J. R. Qiu, K. Hirao, “Fabrication of Titania Tubules with High Surface Area and Well-Developed Mesostructural Walls by Surfactant-Mediated Templating Method”, Chem. Mater., 15, 2011-2016, (2003).
    [41] N.-G. Park, G. Schlichthörl, J. van de Lagematt, H. M. Cheong, A. Mascarenhas, A. J. Frank, “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4”, J Phys. Chem. B, 103, 3308-3314, (1999).

    下載圖示 校內:2008-07-25公開
    校外:2008-07-25公開
    QR CODE