| 研究生: |
忻鼎棋 Hsin, Ding-Chi |
|---|---|
| 論文名稱: |
氮化鎵工作電極應用在光電化學電解水與太陽能電池產氫特性之研究 Hydrogen Production by Photo-Electro-Chemical & Photovoltaic Devices using GaN-based Materials as Working Electrodes |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 氮化鎵 、光電化學 、氫氣 、壓電場 、太陽能電池 |
| 外文關鍵詞: | GaN, Photoelectrochemical, Hydrogen gas, piezoelectric field, solar cell |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這次的研究主要希望應用氮化鎵(GaN)半導體將之光催化分解水產氫,內容包括元件的磊晶結構、光電化學分析、材料特性和半導體黃光製程等相關結合應用於實驗上,目的提升元件抗腐蝕性或者增加產氫效率。
GaN材料也有用於太陽能電池上,同時一般GaN材料的能隙達到3.4eV,而電解水只需要1.23eV,GaN材料吸收太陽能光譜的比例大約只有5%,若太少將導致光電流不佳,因此我們希望利用黃光製程,在同一片基板上並聯一個太陽能電池,來增加光電化學產氫效率,最終目的是不接而外的金屬線,在不加偏壓的0V下,使GaN產氫效率提升。
GaN具有良好的抗腐蝕能力,但在進行產氫時GaN還是會不斷的被消耗,所以希望利用二氧化鈦光觸媒材料幫助吸收長波段光譜之外,有文獻指出觸媒共催化電解水產氫可有效減少對電極的腐蝕,並增加表面粗糙度來減少光的反射,雖效率不如預期增加,但仍有成功減少腐蝕的狀況。
最後我們嘗試眾多結構,使用n-InGaN且預計透過在底部增加super lattice的結構,除了增加長波長吸收效率之外,也可提升上半部GaN的晶體品質。此外我們還希望利用AlGaN晶格不匹配,來探討由於磊晶層晶格不匹配的關係產生的壓電場,來幫助載子的分離。
In this research, we mainly discuss applying Ⅲ-Nitride semiconductor of photoelectrochemical splitting water on the working electrode, including the properties of materials, epitaxy structure, lithography and combining the application in photoelectrochemical analysis, the semiconductor manufacturing as well. For this purpose, we hope to improve device stability also the efficiency of hydrogen and oxygen from splitting water with light illuminating.
Photoelectrochemical reaction (PEC) only needed 1.23eV to generate hydrogen but Gallium Nitride (GaN) is a large band gap semiconductor. Therefore, we use lithography, such as combining a solar cell to improve photocurrent and we accomplish the zero-bias photoelectrolysis of water under visible illumination without assisted bias.
GaN has good corrosion resistance in acid-based solution but PEC reaction still consume n-GaN. Thus we coat TiO2 on n-GaN to enhance the absorption of the solar spectrum. Nevertheless, it didn’t achieve our expectation to increase efficiency. Still it decreased the corrosion of n-GaN.
Finally we tried many structures. We grew AlGaN or InGaN and super lattice layer on GaN-base materials to improve the electron-hole pair separation on the working electrode due to built-in polarization fields by the lattice mismatch and extend the absorption spectrum to visible light. Then we discussed the results which reached our expectation.
[1] Piel, W.J., Transportation fuels of the future? Fuel Processing Technology, 2001. 71(1): p. 167-179.
[2] Hoffert, M.I., Farewell to fossil fuels? Science, 2010. 329(5997): p. 1292-1294.
[3] Pacala, S. and R. Socolow, Stabilization wedges: solving the climate problem for the next 50 years with current technologies. science, 2004. 305(5686): p. 968-972.
[4] EMISSIONS, C., IEA STATISTICS.
[5] Bensaoula, A. and C. Boney, Investigation of III-Nitride Materials for Space-Based Solar Cells. Y2005 Annual Report: p. 50.
[6] Henry, C.H., Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of applied physics, 2008. 51(8): p. 4494-4500.
[7] 許進恭 and 李明倫, 氮化物半導體高效率全波段太陽能電池及太陽能光電解氫氣生成元件之研究. 2008.
[8] BP, statistical review of world energy. 2013.
[9] Murray, J. and D. King, Climate policy: Oil's tipping point has passed. Nature, 2012. 481(7382): p. 433-435.
[10] Thomas, C., B.D. James, and F.D. Lomax Jr, Market penetration scenarios for fuel cell vehicles. International Journal of Hydrogen Energy, 1998. 23(10): p. 949-966.
[11] Veziroglu, T.N., Dawn of the hydrogen age. International journal of hydrogen energy, 1998. 23(12): p. 1077-1078.
[12] Bockris, J.O.M., T.N. Veziroğlu, and D. Smith, Solar hydrogen energy: the power to save the earth. 1991: Vintage.
[13] Bak, T., et al., Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International journal of hydrogen energy, 2002. 27(10): p. 991-1022.
[14] Pagliaro, M. and A.G. Konstandopoulos, Solar Hydrogen: Fuel of the Future. 2012: Royal Society of Chemistry.
[15] Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238: p. 37-38.
[16] Fujishima, A., K. Kohayakawa, and K. Honda, Hydrogen production under sunlight with an electrochemical photocell. Journal of the Electrochemical Society, 1975. 122: p. 1487-1489.
[17] Nozik, A.J. and R. Memming, Physical chemistry of semiconductor-liquid interfaces. The Journal of Physical Chemistry, 1996. 100(31): p. 13061-13078.
[18] Fujii, K., T. Karasawa, and K. Ohkawa, Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Japanese journal of applied physics, 2005. 44(4L): p. L543.
[19] Hayashi, T., M. Deura, and K. Ohkawa, High Stability and Efficiency of GaN Photocatalyst for Hydrogen Generation from Water. Japanese Journal of Applied Physics, 2012. 51(11R): p. 112601.
[20] Wacker, A., Semiconductor superlattices: a model system for nonlinear transport. Physics Reports, 2002. 357(1): p. 1-111.
[21] Schubert, M.F., et al., Polarization-matched GaInN∕ AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Applied Physics Letters, 2008. 93(4): p. 041102.
[22] 陳育同, 氮化物工作電極應用於光電化學電解水產氫特性之研究. 成功大學光電科學與工程學系學位論文, 2013.
[23] 曾俊凱, 氮化鎵銦系列材料應用於再生能源-太陽能電池 & 光電化學水解氫氣元件之研究. 2009.
[24] Fiorentini, V., F. Bernardini, and O. Ambacher, Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Applied Physics Letters, 2002. 80(7): p. 1204-1206.
[25] Zhu, T. and R.A. Oliver, Unintentional doping in GaN. Physical Chemistry Chemical Physics, 2012. 14(27): p. 9558-9573.
[26] Newman, J.S., Electrochemical systems, 1973. Englewood Cliffs, NJ: Prentice Hall.
[27] Koryta, J., W. Dvorak, and L. Kavan, Principles of Electrochemistry, 1993. John Wiley & Sons Ltd.
[28] LeRoy, R., et al., Analysis of Time‐Variation Effects in Water Electrolyzers. Journal of The Electrochemical Society, 1979. 126(10): p. 1674-1682.
[29] Dean, J., Lange's handbook of chemistry. MATERIAL AND MANUFACTURING PROCESS, 1990. 5(4): p. 687-688.
[30] Crow, D., Principles and Applications of Electrochemistry Blackie Academic and Professional. 1994, London.
[31] Bard, A.J., et al., Encyclopedia of Electrochemistry, Volume 6, Semiconductor Electrodes and Photoelectrochemistry. 2002.
[32] Grimes, C.A., O.K. Varghese, and S. Ranjan, Light, water, hydrogen. 2008: Springer.
[33] Kamat, P.V., et al., Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chemical reviews, 2010. 110(11): p. 6664-6688.
[34] Ono, M., et al., Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN. The Journal of chemical physics, 2007. 126(5): p. 054708.
[35] Rotter, T., et al., Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions. Applied Physics Letters, 2000. 76(26): p. 3923-3925.
[36] Leach, J., Ü. Özgür, and H. Morkoç, Evolution of surface morphology of GaN thin films during photoelectrochemical etching. Journal of Vacuum Science & Technology B, 2007. 25(6): p. 1832-1835.
[37] Sawyer, D.T., et al., Electrochemistry for chemists. 1995.
[38] Nič, M., et al., Allotropic transition: Compendium of Chemical Terminology. IUPAC, Research Triagle Park, NC, 2009.
[39] Murphy, A., et al., Efficiency of solar water splitting using semiconductor electrodes. International journal of hydrogen energy, 2006. 31(14): p. 1999-2017.
[40] Huang, C.-W., et al., Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Solar Energy Materials and Solar Cells, 2012. 107(0): p. 322-328.
[41] Dahal, R., et al., Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis. Applied Physics Letters, 2014. 104(14): p. 143901.
[42] 林育詮, 三族氮化物半導體於光電解水產氫之研究. 成功大學光電科學與工程研究所學位論文, 2011: p. 1-88.
[43] van de Krol, R. and M. Grätzel, Photoelectrochemical hydrogen production. Vol. 102. 2011: Springer.
[44] Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
[45] Maeda, K., et al., Photocatalyst releasing hydrogen from water. Nature, 2006. 440(7082): p. 295-295.
[46] Ito, S., et al., Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cells. Progress in photovoltaics: research and applications, 2007. 15(7): p. 603-612.
[47] Du, J., et al., Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of hierarchically ordered macro-mesoporous TiO2 film. Science China Chemistry, 2011. 54(6): p. 930-935.
[48] Shalan, A., et al., A facile low temperature synthesis of TiO2 nanorods for high efficiency dye sensitized solar cells. Applied Physics A, 2013. 110(1): p. 111-122.
[49] Bykhovski, A., et al., Current‐voltage characteristics of strained piezoelectric structures. Journal of applied physics, 1995. 77(4): p. 1616-1620.
[50] Yang, C., et al., Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers. Applied Physics Letters, 2010. 97(2): p. 021113.
[51] Yotsuhashi, S., et al., Enhanced CO2 reduction capability in an AlGaN/GaN photoelectrode. Applied Physics Letters, 2012. 100(24): p. 243904.
[52] Yotsuhashi, S., et al., Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system. AIP Advances, 2012. 2(4): p. 2160.
[53] Li, J., J. Lin, and H. Jiang, Direct hydrogen gas generation by using InGaN epilayers as working electrodes. Applied Physics Letters, 2008. 93(16): p. 162107.
[54] Aryal, K., et al., Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells. Applied Physics Letters, 2010. 96(5): p. 052110-052110-3.
[55] 吳育任, 國立台灣大學電機工程學系副教授. 實驗室網頁與模擬軟體出處. http://yrwu-wk.ee.ntu.edu.tw/.
[56] 鄭玫玲, 金, 鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究. 中央大學材料科學與工程研究所學位論文, 2007: p. 1-77.