| 研究生: |
邱珊珊 Qiu, Shan-Shan |
|---|---|
| 論文名稱: |
一維摻雜銅硫化鋅奈米結構及硫化亞銅/硫化鋅核殼結構的成長與分析 Growth and characterization of one-dimensional ZnS:Cu nanostructures and Cu2-xS/ZnS core-shell structures |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 硫化鋅 、奈米結構 、硫化亞銅 、光感應 |
| 外文關鍵詞: | ZnS, nanostructure, Cu2-xS, photodetector |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗用VLS方法成長了硫化鋅奈米線/奈米帶結構,奈米鋸齒狀(nanosaw)結構,奈米梳子狀結構(nanocomb)。奈米線和奈米帶都有WZ結構和ZB結構;而鋸齒狀奈米線則是由ZB結構的牙齒和WZ結構的枝幹組成;梳子狀奈米線則是單晶的WZ結構。鋸齒狀結構的生長與ZnS的極性面有關,而梳子狀結構則是由於生長環境中反應氣體的蝕刻作用。實驗同樣用VLS的方法合成了摻雜銅的硫化鋅奈米線,摻雜銅的奈米線的形貌隨著銅含量的增加逐漸從直的變成zigzag的形貌,這種改變推測與銅含量增加產生晶格扭曲有關。實驗還利用生長好的硫化鋅奈米線為模板,用離子交換法生長了ZnS/Cu2-xS core/shell結構,並且量測了其和單根硫化鋅奈米線的光感應性質,發現核殼結構除了提高了UV光的響應,對800nm波長的光也有一定響應。另外硫化鋅奈米鋸齒結構也有顯著提高的UV響應。
ZnS nanostructures with variety morphology such as nanobelts, nanowires, nanosaws and nanocombs have been synthesized via VLS growth mechanism. Structure characterization revealed that nanobelts and nanowires both have Cubic and Hexagonal phases. Nanosaw consists of cubic teeth and hexagonal trunk while the nanocombs have single crystalline Wurtzite (WZ) structure. The positive polar surface of WZ structure causes the second growth on its lateral surface. The nanocomb is transformed from the nanobelts, which is etched along the preferential crystallographic planes in a reactive atmosphere. Cu-doped ZnS nanowires have also been synthesized. The copper-doped nanowires have two morphologies, the straight and the zigzag shape. The copper atoms may cause the lattice distortion in ZnS nanowire and to compensate the energy difference, the nanowire may change growth direction and form the zigzag shape. Finally, we use the ZnS nanowires as template to synthesize the ZnS/Cu2-xS core/shell structures. We also measured the photo response of single ZnS nanowire and ZnS/Cu2-xS nanowire and found that ZnS/Cu2-xS nanowire has high responsivity to UV and 800 nm wavelength light. Moreover, ZnS nanosaw also has enhanced UV light responsivity.
[1] Fang, X., et al., ZnS nanostructures: From synthesis to applications. Progress in Materials Science, 2011. 56(2): p. 175-287.
[2] Shen, G. and D. Chen, One-dimensional nanostructures for photodetectors. Recent patents on nanotechnology, 2010. 4(1): p. 20-31.
[3] Moon, J., M. Cho, and M. Zhou, Size- and structure-dependence of thermal and mechanical behaviors of single-crystalline and polytypic superlattice ZnS nanowires. Journal of Applied Physics, 2015. 117(21): p. 214307.
[4] Fang, X., et al., Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors. Advanced Materials, 2009. 21(20): p. 2034-2039.
[5] Chen, H., et al., The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires. Physics Letters A, 2009. 373(3): p. 371-375.
[6] Karazhanov, S.Z., et al., Electronic structure and optical properties ofZnX(X=O,S, Se, Te): A density functional study. Physical Review B, 2007. 75(15).
[7] Qadri, S., et al., Size-induced transition-temperature reduction in nanoparticles of ZnS. Physical Review B, 1999. 60(13): p. 9191.
[8] Akiyama, T., et al., An Empirical Interatomic Potential Approach to Structural Stability of ZnS and ZnSe Nanowires. Japanese Journal of Applied Physics, 2007. 46(4A): p. 1783-1787.
[9] Moore, D. and Z.L. Wang, Growth of anisotropic one-dimensional ZnS nanostructures. Journal of Materials Chemistry, 2006. 16(40): p. 3898.
[10] Wagner, R. and W. Ellis, Vapor-liquid-solid mechanism of crystal growth and its application to silicon. 1965: Bell Telephone Laboratories.
[11] Kar, S. and S. Chaudhuri, Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons. The Journal of Physical Chemistry B, 2005. 109(8): p. 3298-3302.
[12] Ding, Y., X.D. Wang, and Z.L. Wang, Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chemical Physics Letters, 2004. 398(1-3): p. 32-36.
[13] Liang, Y., H. Xu, and S. Hark, Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. The Journal of Physical Chemistry C, 2010. 114(18): p. 8343-8347.
[14] Hao, Y., et al., Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. Nano letters, 2006. 6(8): p. 1650-1655.
[15] Lan, C., et al., Controlled synthesis of ZnS nanocombs by self-evaporation using ZnS nanobelts as source and substrates. CrystEngComm, 2012. 14(2): p. 708-712.
[16] Moore, D., Y. Ding, and Z.L. Wang, Hierarchical structured nanohelices of ZnS. Angew Chem Int Ed Engl, 2006. 45(31): p. 5150-4.
[17] Ma, C., et al., Nanobelts, nanocombs, and nanowindmills of wurtzite ZnS. Advanced Materials, 2003. 15(3): p. 228-231.
[18] Geng, B.Y., et al., Structure and optical properties of periodically twinned ZnS nanowires. Applied Physics Letters, 2006. 88(16): p. 163104.
[19] Shi, L., Y. Xu, and Q. Li, Shape-selective synthesis and optical properties of highly ordered one-dimensional ZnS nanostructures. Crystal Growth and Design, 2009. 9(5): p. 2214-2219.
[20] Wang, J., et al., Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth. Nano Lett, 2013. 13(9): p. 3996-4000.
[21] Huang, X., et al., Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays. ACS nano, 2012. 6(8): p. 7333-7339.
[22] Yu, J.H., et al., Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. Journal of the American Chemical Society, 2005. 127(15): p. 5662-5670.
[23] Zhuang, T.T., et al., Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by chloride ions: a case study. Small, 2014. 10(7): p. 1394-402.
[24] Datta, A., S.K. Panda, and S. Chaudhuri, Phase transformation and optical properties of Cu-doped ZnS nanorods. Journal of Solid State Chemistry, 2008. 181(9): p. 2332-2337.
[25] Liu, M., et al., Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat Commun, 2013. 4: p. 2278.
[26] Lu, J., et al., Preparation and Photoluminescence of (3C-ZnS)/(2H-ZnS) Superlattice in Mn-doped ZnS Nanoribbons. The Journal of Physical Chemistry C, 2012. 116(43): p. 23013-23018.
[27] Liu, H., et al., Cathodoluminescence Modulation of ZnS Nanostructures by Morphology, Doping, and Temperature. Advanced Functional Materials, 2013. 23(29): p. 3701-3709.
[28] Yang, P., et al., Luminescence characteristics of ZnS nanoparticles co-doped with Ni 2+ and Mn 2+. Optical materials, 2003. 24(3): p. 497-502.
[29] Zeng, X., et al., Size- and morphology-dependent optical properties of ZnS:Al one-dimensional structures. J Nanopart Res, 2015. 17(4): p. 188.
[30] Reddy, D.A., et al., Tunable blue-green-emitting wurtzite ZnS: Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs. Nanoscale research letters, 2014. 9(1): p. 1-8.
[31] Sotillo, B., et al., Gallium doped ZnS micro- and nanostructures: thermal synthesis and structural properties. Materials Research Express, 2015. 2(3): p. 035902.
[32] Sotillo, B., P. Fernández, and J. Piqueras, Cathodoluminescence of In doped ZnS nanostructures grown by vapor–solid method. Journal of Alloys and Compounds, 2013. 563: p. 113-118.
[33] Yu, Y., et al., High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties. Journal of Materials Chemistry, 2011. 21(34): p. 12632.
[34] Wang, M.-Z., et al., p-type ZnS:N nanowires: Low-temperature solvothermal doping and optoelectronic properties. Applied Physics Letters, 2013. 103(21): p. 213111.
[35] Zhang, J., et al., Visible light photocatalytic H(2)-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett, 2011. 11(11): p. 4774-9.
[36] Huang, X., et al., Ultraviolet photodetectors with high photosensitivity based on type-II ZnS/SnO2 core/shell heterostructured ribbons. Nanoscale, 2015. 7(12): p. 5311-9.
[37] Rai, S.C., et al., Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. ACS nano, 2015. 9(6): p. 6419-6427.
[38] Tian, W., et al., Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv Mater, 2014. 26(19): p. 3088-93.
[39] Li, H., et al., Blue-UV-emitting ZnSe (dot)/ZnS (rod) core/shell nanocrystals prepared from CdSe/CdS nanocrystals by sequential cation exchange. ACS nano, 2012. 6(2): p. 1637-1647.
[40] Wang, Y., et al., Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi‐Continuous Pumping. Advanced Materials, 2015. 27(1): p. 169-175.
[41] Park, S., et al., Synthesis, structure, and UV-enhanced gas sensing properties of Au-functionalized ZnS nanowires. Sensors and Actuators B: Chemical, 2013. 188: p. 1270-1276.
[42] Xuan, T.-T., et al., Microwave-Assisted Synthesis of CdS/ZnS:Cu Quantum Dots for White Light-Emitting Diodes with High Color Rendition. Chemistry of Materials, 2015. 27(4): p. 1187-1193.
[43] Zhang, Z., et al., Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source “Greener” Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes. Chemistry of Materials, 2015. 27(4): p. 1405-1411.
[44] Zhang, J., et al., Noble metal-free reduced graphene oxide-ZnxCd(1)-xS nanocomposite with enhanced solar photocatalytic H(2)-production performance. Nano Lett, 2012. 12(9): p. 4584-9.
[45] Hu, J., et al., Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. Journal of the American Chemical Society, 2003. 125(37): p. 11306-11313.
[46] Li, Y., et al., Fabrication and photoluminescence of SiO2-sheathed semiconducting nanowires: the case of ZnS/SiO2. Nanotechnology, 2005. 16(4): p. 501-505.
[47] Li, Y., et al., Modeling the Size-Dependent Solid–Solid Phase Transition Temperature of Cu2S Nanosolids. The Journal of Physical Chemistry C, 2012. 116(17): p. 9800-9804.
[48] Pan, C., et al., Enhanced Cu(2)S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett, 2012. 12(6): p. 3302-7.
[49] Burgelman, M. and H. Pauwels, Theoretical advantages of pn+-type Cu2S-ZnO solar cell. Electronics Letters, 1981. 17(6): p. 224-226.
[50] Vimal Michael, R.J., et al., Cu2S-incorporated ZnS nanocomposites for photocatalytic hydrogen evolution. RSC Adv., 2015. 5(38): p. 30175-30186.
[51] Jiang, Y., et al., ITO@Cu2S tunnel junction nanowire arrays as efficient counter electrode for quantum-dot-sensitized solar cells. Nano Lett, 2014. 14(1): p. 365-72.
[52] Xu, Q., et al., Crystal and electronic structures of CuxS solar cell absorbers. Applied Physics Letters, 2012. 100(6): p. 061906.
[53] Yu, X. and X. An, Controllable hydrothermal synthesis of Cu 2 S nanowires on the copper substrate. Materials Letters, 2010. 64(3): p. 252-254.
[54] Kim, H.S., et al., Gas-phase substitution synthesis of Cu1.8S and Cu2S superlattice nanowires from CdS nanowires. CrystEngComm, 2011. 13(6): p. 2091.
[55] Wang, N., et al., Oxide-assisted nucleation and growth of copper sulphide nanowire arrays. Journal of crystal growth, 2001. 233(1): p. 226-232.
[56] Ma, G., et al., Self-assembly of copper sulfide nanoparticles into nanoribbons with continuous crystallinity. ACS nano, 2013. 7(10): p. 9010-9018.
[57] Soci, C., et al., ZnO nanowire UV photodetectors with high internal gain. Nano letters, 2007. 7(4): p. 1003-1009.
[58] Liang, Y., et al., The epitaxial growth of ZnS nanowire arrays and their applications in UV-light detection. J. Mater. Chem., 2012. 22(3): p. 1199-1205.
[59] Hu, L., et al., Heteroepitaxial growth of GaP/ZnS nanocable with superior optoelectronic response. Nano Lett, 2013. 13(5): p. 1941-7.
[60] Sharma, B., Metal-semiconductor Schottky barrier junctions and their applications. 2013: Springer Science & Business Media.
[61] 汪建民,材料分析. 1998:中國材料科學學會.
[62] Ngo, P.D., Energy dispersive spectroscopy, in Failure Analysis of Integrated Circuits. 1999, Springer. p. 205-215.
[63] 成功大學微奈米中心儀器設備介紹 http://cmnst.ncku.edu.tw/files/11-1023-13238.php?Lang=zh-tw
[64] Torabi, A. and V.N. Staroverov, Band Gap Reduction in ZnO and ZnS by Creating Layered ZnO/ZnS Heterostructures. J Phys Chem Lett, 2015. 6(11): p. 2075-80.
[65] Agarwal, R., et al., Real-Time Observation of Morphological Transformations in II-VI Semiconducting Nanobelts via Environmental Transmission Electron Microscopy. Nano Lett, 2015. 15(5): p. 3303-8.
[66] Zhai, T., et al., Fabrication, structural characterization and photoluminescence of single-crystal Zn(x)Cd(1-x)S zigzag nanowires. Nanotechnology, 2006. 17(18): p. 4644-9.
[67] Gray, J.N. and R. Clarke, Superlattice ordering in digenite, Cu 2− x S. Physical Review B, 1986. 33(3): p. 2056.
[68] Mohamed, S., Photocatalytic, optical and electrical properties of copper-doped zinc sulfide thin films. Journal of Physics D: Applied Physics, 2010. 43(3): p. 035406.
[69] Wang, Y., et al., Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chemical Physics Letters, 2002. 357(3): p. 314-318.
[70] Xu, S., et al., Aqueous synthesis of internally doped Cu:ZnSe/ZnS core-shell nanocrystals with good stability. Nanotechnology, 2011. 22(27): p. 275605.
[71] Ma, D.D.D., et al., Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires. Nano letters, 2006. 6(5): p. 926-929.
[72] Oh, Y.M., et al., Correlating luminescence from individual ZnO nanostructures with electronic transport characteristics. Nano Letters, 2007. 7(12): p. 3681-3685.
[73] Bol, A.A., et al., Luminescence of nanocrystalline ZnS: Cu 2+. Journal of luminescence, 2002. 99(4): p. 325-334.