簡易檢索 / 詳目顯示

研究生: 李冠霆
Lee, Kuan-Ting
論文名稱: 聚偏二氟乙烯衍生高分子之合成鑑定與其於鋰電池之應用
Synthesis and Characterization of Polyvinylidene Fluoride Derivatives Used for Lithium Batteries
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: 聚偏二氟乙烯磺酸根腈基黏著劑鋰電池
外文關鍵詞: polyvinylidene fluoride, sulfonate, nitrile group, binder, lithium battery
相關次數: 點閱:78下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以原子轉移自由基聚合法,成功合成出側鏈帶有不同長度磺酸根及腈基的聚偏二氟乙烯接枝高分子P-g-sPGMA及P-g-sPGMA-PAN,並將其作為導離子型高分子黏著劑,應用於鋰電池正極磷酸鋰鐵材料中。此高分子黏著劑,於電解液中有良好電化學穩定性,且側鏈上的磺酸根及腈基,能幫助電極材料提升分散性,並增進鋰離子傳導速率,減少電池極化現象。本實驗將以循環伏安法、電化學阻抗頻譜法、電池充放電測試、循環壽命測試、及180 °剝離力測試,鑑定高分子黏著劑之特性及電化學表現性,並與商業用黏著劑聚偏二氟乙烯作比較。以P-g-sPGMA 及P-g-sPGMA-PAN製備的電極材料,由於能在負極形成穩定且緻密的SEI層,因此有著相對較小的界面阻抗。其側鏈導離子官能基,由於能幫助鋰離子嵌入遷出電極,因此可得到較穩定之充放電平台。與PVDF相比,使用P-g-sPGMA 及P-g-sPGMA-PAN的電極材料,有著更優異的循環穩定性與電容維持率,儘管接枝導離子官能基後,其附著力不如PVDF,但仍不影響其在循環壽命上的表現性。

    In this study, the polyvinylidene fluoride (PVDF) grafted with sulfonates (P-g-sPGMA) and nitrile groups (P-g-sPGMA-PAN) has been synthesized through atom transfer radical polymerization (ATRP) and applied as the ionic conductivity binder for a lithium ion phosphate (LiFePO4) cathode of a lithium battery. These two types of grafted polymers exhibit strong chemical stability in electrolyte. Sulfonic and nitrile side chains can help to improve the dispersion of cathode materials and enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic and nitrile chains. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge testing, cycle testing, 180° peel testing, and compared with the cathode prepared with PVDF binder. The electrodes prepared with P-g-sPGMA and P-g-sPGMA-PAN binder form the relatively smaller resistance due to the stable and compact SEI layer formed on the Li electrode. The ionic side chains are beneficial to lithium ion intercalation and de-intercalation of the cathode during charging-discharging, therefore the cell prepared with P-g-sPGMA and P-g-sPGMA-PAN show lower charge plateau potential and higher discharge potential. Compared with PVDF, the electrode with ionic binder exhibits better cycling stability and rate capability. Meanwhile, although the adhesion strength of electrodes prepared with ionic binders are less than that with PVDF, it does not influence the cycling stability.

    中文摘要 I Abstract II 誌謝 XIV 目錄 XV 表目錄 XX 圖目錄 XXI 第一章 緒論 1 1.1 前言 1 1.2 鋰電池簡介 3 1.3 鋰電池基本工作原理 5 1.4 電極材料 7 1.5 電解質 11 1.6 黏著劑 13 1.7 研究動機 15 第二章 文獻回顧 17 2.1 非水性黏著劑 17 2.2 水性黏著劑 19 2.2.1 羧甲基纖維素(CMC) 19 2.2.2 聚丙烯酸(PAA) 23 2.2.3 海藻酸鈉(SA) 25 2.3 功能型高分子黏著劑 27 2.3.1 導電型高分子黏著劑 27 2.3.2 導離子型高分子黏著劑 28 2.3.3 穩定電極結構型高分子黏著劑 30 2.3.4 鋰硫電池黏著劑 33 2.4 鋰金屬負極的型態變化與SEI的形成 36 2.5 原子轉移自由基聚合法 (ATRP) 43 2.5.1 ATRP簡介 43 2.5.2 ATRP構成要素 44 2.5.3 ATRP反應機制 45 2.5.4 ATRP之應用 46 第三章 實驗 49 3.1 實驗藥品與材料 49 3.2 實驗儀器與設備 51 3.3 樣品製備 53 3.3.1 鋰式牛磺酸(LiAES)之製備 53 3.3.2 聚偏二氟乙烯接枝高分子之製備 53 3.3.3 聚偏二氟乙烯接枝高分子之磺酸化 55 3.4 材料性質分析與鑑定 58 3.4.1 傅立葉轉換紅外光譜儀(FT-IR) 58 3.4.2 核磁共振光譜儀(1H NMR) 58 3.4.3 熱重分析儀(TGA) 59 3.4.4 示差掃描熱量分析儀(DSC) 59 3.4.5 掃描式電子顯微鏡(SEM) 60 3.4.6 剝離力測式(Peeling Test) 60 3.4.7 高分子於電解液中穩定性測試(Polymer Stability) 61 3.4.8 鋰金屬表面型態分析 61 3.5 鋰離子電池之製備與組裝 63 3.5.1 LiFePO4正極極片製作 63 3.5.2 鈕扣型電池組裝 63 3.6 電化學測試 65 3.6.1 電池充放電能力測式(C-rate Test) 65 3.6.2 電池循環壽命測試(Cycle Life Test) 65 3.6.3 電化學阻抗頻譜法(EIS) 65 3.6.4 離子傳導度(Ionic Conductivity) 68 3.6.5 循環伏安法(Cyclic Voltammetry) 69 第四章 結果與討論 70 4.1 聚偏二氟乙烯衍生高分子之合成與鑑定 70 4.1.1 傅立葉轉換紅外光譜分析 70 4.1.2 核磁共振光譜分析 72 4.2 熱重分析 76 4.3 熱轉移性質 80 4.4 黏著劑於電解液中穩定性測試 82 4.5 電極表面與截面型態 85 4.6 循環伏安法分析 91 4.7 離子傳導度 95 4.8 電化學阻抗頻譜分析 97 4.9 鋰離子電池充放電測試 101 4.10 鋰離子電池循環壽命測試 105 4.11 鋰金屬形態變化及其表面SEI之形成 112 4.12 剝離力測試 115 第五章 結論 120 第六章 參考文獻 122

    1. Tarascon, J. M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359-367.
    2. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical Energy Storage for Transportation-Approaching the Limits of, and Going Beyond, Lithium-Ion Batteries. Energy & Environmental Science 2012, 5, 7854-7863.
    3. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A Review of Advanced and Practical Lithium Battery Materials. Journal of Materials Chemistry 2011, 21, 9938-9954.
    4. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935.
    5. Lin, D.; Liu, Y.; Cui, Y., Reviving the Lithium Metal Anode for High-Energy Batteries. Nature Nanotechnology 2017, 12, 194-206.
    6. Deng, D., Li-Ion Batteries: Basics, Progress, and Challenges. Energy Science & Engineering 2015, 3, 385-418.
    7. Scrosati, B., History of Lithium Batteries. Journal of Solid State Electrochemistry 2011, 15, 1623-1630.
    8. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q., A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Advanced Science 2016, 3, 1500213-n/a.
    9. Lin, D.; Liu, Y.; Cui, Y., Reviving the Lithium Metal Anode for High-Energy Batteries. Nat Nano 2017, 12, 194-206.
    10. Ozawa, K., Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: The LiCoO2/C System. Solid State Ionics 1994, 69, 212-221.
    11. Goodenough, J. B.; Park, K.-S., The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135, 1167-1176.
    12. Whittingham, M. S., Ultimate Limits to Intercalation Reactions for Lithium Batteries. Chemical Reviews 2014, 114, 11414-11443.
    13. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C., Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. Journal of Power Sources 2014, 257, 421-443.
    14. Obrovac, M. N.; Chevrier, V. L., Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews 2014, 114, 11444-11502.
    15. Elia, G. A.; Park, J.-B.; Sun, Y.-K.; Scrosati, B.; Hassoun, J., Role of the Lithium Salt in the Performance of Lithium–Oxygen Batteries: A Comparative Study. ChemElectroChem 2014, 1, 47-50.
    16. Marcinek, M., et al., Electrolytes for Li-Ion Transport – Review. Solid State Ionics 2015, 276, 107-126.
    17. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews 2014, 114, 11503-11618.
    18. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104, 4303-4418.
    19. Ohzuku, T.; Ueda, A., Solid‐State Redox Reactions of LiCoO2 (R3̅M) for 4 Volt Secondary Lithium Cells. Journal of The Electrochemical Society 1994, 141, 2972-2977.
    20. Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B., Lithium Mobility in the Layered Oxide Li1−XCoO2. Solid State Ionics 1985, 17, 13-19.
    21. Chen, Y.; Xie, K.; Zheng, C.; Ma, Z.; Chen, Z., Enhanced Li Storage Performance of LiNi0.5Mn1.5O4–Coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6, 16888-16894.
    22. Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M., Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes. Nat Mater 2002, 1, 123-128.
    23. Yang, S.; Song, Y.; Ngala, K.; Zavalij, P. Y.; Stanley Whittingham, M., Performance of Lifepo4 as Lithium Battery Cathode and Comparison with Manganese and Vanadium Oxides. Journal of Power Sources 2003, 119–121, 239-246.
    24. Strobridge, F. C., et al., Mapping the Inhomogeneous Electrochemical Reaction through Porous Lifepo4-Electrodes in a Standard Coin Cell Battery. Chemistry of Materials 2015, 27, 2374-2386.
    25. Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B., Development and Challenges of Lifepo4 Cathode Material for Lithium-Ion Batteries. Energy & Environmental Science 2011, 4, 269-284.
    26. Nishimura, S.-i.; Natsui, R.; Yamada, A., Superstructure in the Metastable Intermediate-Phase Li2/3fepo4 Accelerating the Lithium Battery Cathode Reaction. Angewandte Chemie International Edition 2015, 54, 8939-8942.
    27. Luo, W.; Zhou, L.; Fu, K.; Yang, Z.; Wan, J.; Manno, M.; Yao, Y.; Zhu, H.; Yang, B.; Hu, L., A Thermally Conductive Separator for Stable Li Metal Anodes. Nano Letters 2015, 15, 6149-6154.
    28. Sharova, V.; Kim, G.-T.; Giffin, G. A.; Lex-Balducci, A.; Passerini, S., Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler. Macromolecular Rapid Communications 2016, 37, 1188-1193.
    29. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chemistry of Materials 2010, 22, 587-603.
    30. Quartarone, E.; Mustarelli, P., Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives. Chemical Society Reviews 2011, 40, 2525-2540.
    31. Ma, C.; Rangasamy, E.; Liang, C.; Sakamoto, J.; More, K. L.; Chi, M., Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte Upon Reversible Li+/H+ Exchange in Aqueous Solutions. Angewandte Chemie 2015, 127, 131-135.
    32. Li, Q.; Ardebili, H., Flexible Thin-Film Battery Based on Solid-Like Ionic Liquid-Polymer Electrolyte. Journal of Power Sources 2016, 303, 17-21.
    33. Chou, S.-L.; Pan, Y.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X., Small Things Make a Big Difference: Binder Effects on the Performance of Li and Na Batteries. Physical Chemistry Chemical Physics 2014, 16, 20347-20359.
    34. Li, J.; Christensen, L.; Obrovac, M. N.; Hewitt, K. C.; Dahn, J. R., Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. Journal of The Electrochemical Society 2008, 155, A234-A238.
    35. Loeffler, N.; Kopel, T.; Kim, G.-T.; Passerini, S., Polyurethane Binder for Aqueous Processing of Li-Ion Battery Electrodes. Journal of The Electrochemical Society 2015, 162, A2692-A2698.
    36. Loeffler, N.; von Zamory, J.; Laszczynski, N.; Doberdo, I.; Kim, G.-T.; Passerini, S., Performance of LiNi1/3Mn1/3Co1/3O2/Graphite Batteries Based on Aqueous Binder. Journal of Power Sources 2014, 248, 915-922.
    37. Tran, B.; Oladeji, I. O.; Wang, Z.; Calderon, J.; Chai, G.; Atherton, D.; Zhai, L., Adhesive Peg-Based Binder for Aqueous Fabrication of Thick Li4ti5o12 Electrode. Electrochimica Acta 2013, 88, 536-542.
    38. Zhong, H.; Sun, M.; Li, Y.; He, J.; Yang, J.; Zhang, L., The Polyacrylic Latex: An Efficient Water-Soluble Binder for LiNi1/3Mn1/3Co1/3O2 Cathode in Li-Ion Batteries. Journal of Solid State Electrochemistry 2016, 20, 1-8.
    39. Tsao, C.-H.; Hsu, C.-H.; Kuo, P.-L., Ionic Conducting and Surface Active Binder of Poly (Ethylene Oxide)-Block-Poly(Acrylonitrile) for High Power Lithium-Ion Battery. Electrochimica Acta 2016, 196, 41-47.
    40. Wei, Z.; Xue, L.; Nie, F.; Sheng, J.; Shi, Q.; Zhao, X., Study of Sulfonated Polyether Ether Ketone with Pendant Lithiated Fluorinated Sulfonic Groups as Ion Conductive Binder in Lithium-Ion Batteries. Journal of Power Sources 2014, 256, 28-31.
    41. Xue, Z.; He, D.; Xie, X., Poly(Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries. Journal of Materials Chemistry A 2015, 3, 19218-19253.
    42. Gong, L.; Nguyen, M. H. T.; Oh, E.-S., High Polar Polyacrylonitrile as a Potential Binder for Negative Electrodes in Lithium Ion Batteries. Electrochemistry Communications 2013, 29, 45-47.
    43. He, J.; Wang, J.; Zhong, H.; Ding, J.; Zhang, L., Cyanoethylated Carboxymethyl Chitosan as Water Soluble Binder with Enhanced Adhesion Capability and Electrochemical Performances for Lifepo4 Cathode. Electrochimica Acta 2015, 182, 900-907.
    44. Zhang, S. S.; Xu, K.; Jow, T. R., Evaluation on a Water-Based Binder for the Graphite Anode of Li-Ion Batteries. Journal of Power Sources 2004, 138, 226-231.
    45. Zhang, Z.; Zeng, T.; Qu, C.; Lu, H.; Jia, M.; Lai, Y.; Li, J., Cycle Performance Improvement of Lifepo4 Cathode with Polyacrylic Acid as Binder. Electrochimica Acta 2012, 80, 440-444.
    46. Nguyen, V. H.; Wang, W. L.; Jin, E. M.; Gu, H.-B., Impacts of Different Polymer Binders on Electrochemical Properties of Lifepo4 Cathode. Applied Surface Science 2013, 282, 444-449.
    47. Zhang, S. S.; Jow, T. R., Study of Poly(Acrylonitrile-Methyl Methacrylate) as Binder for Graphite Anode and Limn2o4 Cathode of Li-Ion Batteries. Journal of Power Sources 2002, 109, 422-426.
    48. Guerfi, A.; Kaneko, M.; Petitclerc, M.; Mori, M.; Zaghib, K., Lifepo4 Water-Soluble Binder Electrode for Li-Ion Batteries. Journal of Power Sources 2007, 163, 1047-1052.
    49. Lee, J.-H.; Paik, U.; Hackley, V. A.; Choi, Y.-M., Effect of Carboxymethyl Cellulose on Aqueous Processing of Natural Graphite Negative Electrodes and Their Electrochemical Performance for Lithium Batteries. Journal of The Electrochemical Society 2005, 152, A1763-A1769.
    50. Wang, H.; Umeno, T.; Mizuma, K.; Yoshio, M., Highly Conductive Bridges between Graphite Spheres to Improve the Cycle Performance of a Graphite Anode in Lithium-Ion Batteries. Journal of Power Sources 2008, 175, 886-890.
    51. Buqa, H.; Holzapfel, M.; Krumeich, F.; Veit, C.; Novák, P., Study of Styrene Butadiene Rubber and Sodium Methyl Cellulose as Binder for Negative Electrodes in Lithium-Ion Batteries. Journal of Power Sources 2006, 161, 617-622.
    52. Li, J.; Lewis, R. B.; Dahn, J. R., Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. Electrochemical and Solid-State Letters 2007, 10, A17-A20.
    53. Lestriez, B.; Bahri, S.; Sandu, I.; Roué, L.; Guyomard, D., On the Binding Mechanism of Cmc in Si Negative Electrodes for Li-Ion Batteries. Electrochemistry Communications 2007, 9, 2801-2806.
    54. Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M., Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability. Electrochemical and Solid-State Letters 2008, 11, A76-A80.
    55. Li, C.-C.; Lee, J.-T.; Tung, Y.-L.; Yang, C.-R., Effects of Ph on the Dispersion and Cell Performance of Licoo2 Cathodes Based on the Aqueous Process. Journal of Materials Science 2007, 42, 5773-5777.
    56. Saeki, S.; Lee, J.; Zhang, Q.; Saito, F., Co-Grinding LiCoO2 with Pvc and Water Leaching of Metal Chlorides Formed in Ground Product. International Journal of Mineral Processing 2004, 74, Supplement, S373-S378.
    57. Porcher, W.; Moreau, P.; Lestriez, B.; Jouanneau, S.; Guyomard, D., Is LiFePO4 Stable in Water?: Toward Greener Li–Ion Batteries. Electrochemical and Solid-State Letters 2008, 11, A4-A8.
    58. Porcher, W.; Moreau, P.; Lestriez, B.; Jouanneau, S.; Le Cras, F.; Guyomard, D., Stability of LiFePO4 in Water and Consequence on the Li Battery Behaviour. Ionics 2008, 14, 583-587.
    59. Porcher, W.; Lestriez, B.; Jouanneau, S.; Guyomard, D., Design of Aqueous Processed Thick LiFePO4 Composite Electrodes for High-Energy Lithium Battery. Journal of The Electrochemical Society 2009, 156, A133-A144.
    60. Lee, J.-H.; Kim, J.-S.; Kim, Y. C.; Zang, D. S.; Paik, U., Dispersion Properties of Aqueous-Based LiFePO4 Pastes and Their Electrochemical Performance for Lithium Batteries. Ultramicroscopy 2008, 108, 1256-1259.
    61. Lux, S. F.; Schappacher, F.; Balducci, A.; Passerini, S.; Winter, M., Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries. Journal of The Electrochemical Society 2010, 157, A320-A325.
    62. Cai, Z. P.; Liang, Y.; Li, W. S.; Xing, L. D.; Liao, Y. H., Preparation and Performances of LiFePO4 Cathode in Aqueous Solvent with Polyacrylic Acid as a Binder. Journal of Power Sources 2009, 189, 547-551.
    63. Ui, K.; Kikuchi, S.; Mikami, F.; Kadoma, Y.; Kumagai, N., Improvement of Electrochemical Characteristics of Natural Graphite Negative Electrode Coated with Polyacrylic Acid in Pure Propylene Carbonate Electrolyte. Journal of Power Sources 2007, 173, 518-521.
    64. Komaba, S.; Ozeki, T.; Okushi, K., Functional Interface of Polymer Modified Graphite Anode. Journal of Power Sources 2009, 189, 197-203.
    65. Komaba, S.; Okushi, K.; Ozeki, T.; Yui, H.; Katayama, Y.; Miura, T.; Saito, T.; Groult, H., Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries. Electrochemical and Solid-State Letters 2009, 12, A107-A110.
    66. Komaba, S.; Yabuuchi, N.; Ozeki, T.; Okushi, K.; Yui, H.; Konno, K.; Katayama, Y.; Miura, T., Functional Binders for Reversible Lithium Intercalation into Graphite in Propylene Carbonate and Ionic Liquid Media. Journal of Power Sources 2010, 195, 6069-6074.
    67. Lee, J.-T.; Chu, Y.-J.; Peng, X.-W.; Wang, F.-M.; Yang, C.-R.; Li, C.-C., A Novel and Efficient Water-Based Composite Binder for LiCoO2 Cathodes in Lithium-Ion Batteries. Journal of Power Sources 2007, 173, 985-989.
    68. Li, C.-C.; Peng, X.-W.; Lee, J.-T.; Wang, F.-M., Using Poly(4-Styrene Sulfonic Acid) to Improve the Dispersion Homogeneity of Aqueous-Processed LiFePO4 Cathodes. Journal of The Electrochemical Society 2010, 157, A517-A520.
    69. Chen, L.; Xie, X.; Xie, J.; Wang, K.; Yang, J., Binder Effect on Cycling Performance of Silicon/Carbon Composite Anodes for Lithium Ion Batteries. Journal of Applied Electrochemistry 2006, 36, 1099-1104.
    70. Komaba, S.; Ozeki, T.; Yabuuchi, N.; Shimomura, K., Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries. Electrochemistry 2011, 79, 6-9.
    71. Komaba, S.; Yabuuchi, N.; Ozeki, T.; Han, Z.-J.; Shimomura, K.; Yui, H.; Katayama, Y.; Miura, T., Comparative Study of Sodium Polyacrylate and Poly(Vinylidene Fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries. The Journal of Physical Chemistry C 2012, 116, 1380-1389.
    72. Chong, J.; Xun, S.; Zheng, H.; Song, X.; Liu, G.; Ridgway, P.; Wang, J. Q.; Battaglia, V. S., A Comparative Study of Polyacrylic Acid and Poly(Vinylidene Difluoride) Binders for Spherical Natural Graphite/Lifepo4 Electrodes and Cells. Journal of Power Sources 2011, 196, 7707-7714.
    73. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G., A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science 2011, 334, 75-79.
    74. Ryou, M.-H., et al., Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries. Advanced Materials 2013, 25, 1571-1576.
    75. Kuwabata, S.; Idzu, T.; Martin, C. R.; Yoneyama, H., Charge‐Discharge Properties of Composite Films of Polyaniline and Crystalline  V2O5 Particles. Journal of The Electrochemical Society 1998, 145, 2707-2710.
    76. Takashi, T.; Yosuke, A.; Toshiyuki, O.; Kaoru, D., Polyaniline as a Functional Binder for Lifepo4 Cathodes in Lithium Batteries. Chemistry Letters 2011, 40, 828-830.
    77. Huang, Y.-H.; Goodenough, J. B., High-Rate Lifepo4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers. Chemistry of Materials 2008, 20, 7237-7241.
    78. Liu, J.; Zhang, Q.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G., A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries. Advanced Functional Materials 2015, 25, 3599-3605.
    79. Yuca, N.; Zhao, H.; Song, X.; Dogdu, M. F.; Yuan, W.; Fu, Y.; Battaglia, V. S.; Xiao, X.; Liu, G., A Systematic Investigation of Polymer Binder Flexibility on the Electrode Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6, 17111-17118.
    80. Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N.-S.; Cho, J., A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie International Edition 2012, 51, 8762-8767.
    81. Ling, M., et al., Dual-Functional Gum Arabic Binder for Silicon Anodes in Lithium Ion Batteries. Nano Energy 2015, 12, 178-185.
    82. Guo, J.; Wang, C., A Polymer Scaffold Binder Structure for High Capacity Silicon Anode of Lithium-Ion Battery. Chemical Communications 2010, 46, 1428-1430.
    83. Mikhaylik, Y. V.; Akridge, J. R., Polysulfide Shuttle Study in the Li/S Battery System. Journal of The Electrochemical Society 2004, 151, A1969-A1976.
    84. Ai, G., et al., Investigation of Surface Effects through the Application of the Functional Binders in Lithium Sulfur Batteries. Nano Energy 2015, 16, 28-37.
    85. Zeng, F.; Wang, W.; Wang, A.; Yuan, K.; Jin, Z.; Yang, Y.-s., Multidimensional Polycation Β-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2015, 7, 26257-26265.
    86. Chen, W., et al., A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries. Advanced Materials 2017, 29, 1605160-n/a.
    87. Lu, D., et al., Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes. Advanced Energy Materials 2015, 5, 1400993-n/a.
    88. López, C. M.; Vaughey, J. T.; Dees, D. W., Morphological Transitions on Lithium Metal Anodes. Journal of The Electrochemical Society 2009, 156, A726-A729.
    89. Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P., Detection of Subsurface Structures Underneath Dendrites Formed on Cycled Lithium Metal Electrodes. Nat Mater 2014, 13, 69-73.
    90. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High Rate and Stable Cycling of Lithium Metal Anode. Nature Communications 2015, 6, 6362.
    91. Wang, J.-S.; Matyjaszewski, K., Controlled/" Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu (I)/Cu (Ii) Redox Process. Macromolecules 1995, 28, 7901-7910.
    92. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(Triphenylphosphine) Ruthenium (Ii)/Methylaluminum Bis (2, 6-Di-Tert-Butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721-1723.
    93. Matyjaszewski, K.; Xia, J., Atom Transfer Radical Polymerization. Chemical reviews 2001, 101, 2921-2990.
    94. Hester, J.; Banerjee, P.; Won, Y.-Y.; Akthakul, A.; Acar, M.; Mayes, A., Atrp of Amphiphilic Graft Copolymers Based on Pvdf and Their Use as Membrane Additives. Macromolecules 2002, 35, 7652-7661.
    95. He, F.; Luo, B.; Yuan, S.; Liang, B.; Choong, C.; Pehkonen, S. O., Pvdf Film Tethered with Rgd-Click-Poly (Glycidyl Methacrylate) Brushes by Combination of Direct Surface-Initiated Atrp and Click Chemistry for Improved Cytocompatibility. RSC Advances 2014, 4, 105-117.
    96. Roh, D. K.; Ahn, S. H.; Seo, J. A.; Shul, Y. G.; Kim, J. H., Synthesis and Characterization of Grafted/Crosslinked Proton Conducting Membranes Based on Amphiphilic Pvdf Copolymer. Journal of Polymer Science Part B: Polymer Physics 2010, 48, 1110-1117.
    97. Qin, Y.; Sukul, V.; Pagakos, D.; Cui, C.; Jäkle, F., Preparation of Organoboron Block Copolymers Via Atrp of Silicon and Boron-Functionalized Monomers. Macromolecules 2005, 38, 8987-8990.
    98. Zhang, Z.-B.; Ying, S.-K.; Shi, Z.-Q., Synthesis of Fluorine-Containing Block Copolymers Via Atrp 2. Synthesis and Characterization of Semifluorinated Di-and Triblock Copolymers. Polymer 1999, 40, 5439-5444.
    99. Carlmark, A.; Malmström, E. E., Atrp Grafting from Cellulose Fibers to Create Block-Copolymer Grafts. Biomacromolecules 2003, 4, 1740-1745.
    100. Lee, S. B.; Russell, A. J.; Matyjaszewski, K., Atrp Synthesis of Amphiphilic Random, Gradient, and Block Copolymers of 2-(Dimethylamino) Ethyl Methacrylate and N-Butyl Methacrylate in Aqueous Media. Biomacromolecules 2003, 4, 1386-1393.
    101. Aurbach, D., Review of Selected Electrode–Solution Interactions Which Determine the Performance of Li and Li Ion Batteries. Journal of Power Sources 2000, 89, 206-218.
    102. Rodrigues, S.; Munichandraiah, N.; Shukla, A. K., Ac Impedance and State-of-Charge Analysis of a Sealed Lithium-Ion Rechargeable Battery. Journal of Solid State Electrochemistry 1999, 3, 397-405.

    下載圖示 校內:2022-07-30公開
    校外:2022-07-30公開
    QR CODE