| 研究生: |
楊承恩 Yang, Cheng-En |
|---|---|
| 論文名稱: |
長鏈高分子與小分子有機化合物之結晶型態與晶板組裝之比較 Comparative Study of Morphology and Lamellar Assembly in Long-chain Polymers versus Small- molecule Organic Compounds |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 聚對苯二甲酸癸二酯 、鄰苯二甲酸 、韻律成長 、環帶狀球晶 |
| 外文關鍵詞: | long-chain polymer, small-molecule, banded spherulite, lamellar orientation |
| 相關次數: | 點閱:91 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用偏光顯微鏡(polarized optical microscopy, POM)、微分掃描熱卡計(differential scanning calorimeter, DSC)、廣角X光繞射儀(wide-angle X-ray diffraction, WAXD)、原子力顯微鏡(atomic force microscopy, AFM)、環境式掃描式電子顯微鏡(environment scanning electron microscopy, E-SEM)分別探討:聚芳香羧酸酯類聚對苯二甲酸癸二酯[Poly(decamethylene terephthalate), PDT]及PDT/聚對苯二甲酸十二二酯[Poly(dodecamethylene terephthalate), PDoT]混摻系統之結晶型態、晶態分析、表面及截面晶板型貌;小分子鄰苯二甲酸(phthalic acid, PA)與其他相似結構小分子之結晶型態、表面及截面晶板型貌。
在PDT系統中,利用POM觀察結晶形貌,在低溫的溫度區間 (RT~110 oC) 形成雙層環帶球晶 (double ring-banded),在高溫的區間 (120~125 oC) 則形成非傳統型的同心環帶狀球晶 (concentric ring-banded)。同時藉由加上上蓋觀察加蓋後double ring-banded及concentric ring-banded兩種球晶結晶形貌的改變,並探討其形成機制,針對非傳統型的同心環帶狀球晶,沒有加蓋的情況下,生成此種球晶的樣品厚度在一定範圍內 (300nm~12um),利用原子力顯微鏡分析,球晶沿著軸方向呈現規律的高低起伏並形成crystal-rich及crystal-poor bands的交替,為rhythmic growth之成長模式;針對一般的雙層環帶球晶,將樣品製備為塊材狀態並將之斷裂,再利用環境式掃描式電子顯微鏡觀察球晶在三維尺度下球晶晶板的排列情形,在斷截面ridge和valley分別是由tangential及radial方向的晶板組成,由於PDoT具有與PDT相似的結晶行為,因此將此兩材料混摻並作分析,混摻過後原本各自會形成的concentric ring-banded球晶消失,形成ringless的球晶。
在小分子系統中,phthalic acid溶於ethanol/water (20/80) 的溶劑,並利用溶劑揮發的方式在不同的溫度下 (RT~110 oC) 結晶皆會形成環帶狀球晶,藉由環境式掃描式電子顯微鏡觀察球晶在平面以及斷截面的晶板型貌以及排列情形,發現ridge及valley分別是由vertical以及horizontal型貌的晶板所組成。
In this study, we compare the banded spherulite forming by long-chain polymer and small-molecule, and discuss the mechanism of forming banded spherulite for those two. Polymer and small-molecule crystal samples were prepared by melt-crystallization and solvent evaporation-induced crystallization methods, respectively. The reason for forming banded spherulite for both small-molecule and polymer systems were caused by different lamellar orientation at ridge and valley that were different from traditional lamellar twisting.
1. Z. Qiu, C. Yan, J. Lu, W. Yang, Miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) and poly(butylene succinate-co-butylene adipate): Spherulitic morphologies and crystallization kinetics†. Macromolecules, 40(14): p. 5047-5053 (2007)
2. L. Zhao, X. Peng, X. Liu, Y. Wang, S. Qin, J. Zhang, Miscibility and morphology of binary crystalline blends of poly (L-lactide) and poly (butylene adipate). Polymer journal, 45(9): p. 929-937 (2013)
3. R. Gregorio Jr, M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 32(5): p. 859-870 (1994)
4. I.H. Huang, L. Chang, E.M. Woo, Tannin induced single crystalline morphology in poly(ethylene succinate). Macromolecular Chemistry and Physics, 212(11): p. 1155-1164 (2011)
5. Z. Qiu, T. Ikehara, T. Nishi, Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer, 44(9): p. 2799-2806 (2003)
6. A. Siegmann, Crystalline/crystalline polymer blends: Some structure–property relationships. Journal of Applied Polymer Science, 24(12): p. 2333-2345 (1979)
7. J. Yang, P. Pan, L. Hua, B. Zhu, T. Dong, Y. Inoue, Polymorphic crystallization and phase transition of poly(butylene adipate) in its miscible crystalline/crystalline blend with poly(vinylidene fluoride). Macromolecules, 43(20): p. 8610-8618 (2010)
8. H.L. Chen, L.J. Li, T.L. Lin, Formation of segregation morphology in crystalline/amorphous polymer blends: Molecular weight effect. Macromolecules, 31(7): p. 2255-2264 (1998)
9. J. Wang, M.K. Cheung, Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and 13C solid state NMR. Polymer, 43(4): p. 1357-1364 (2002)
10. L.T. Lee, E.M. Woo, Miscible blends of poly(4-vinyl phenol)/poly (trimethylene terephthalate). Polymer International, 53(11): p. 1813-1820 (2004)
11. T.A. Callaghan, D.R. Paul, Interaction energies for blends of poly(methyl methacrylate), polystyrene, and poly(.alpha.-methylstyrene) by the critical molecular weight method. Macromolecules, 26(10): p. 2439-2450 (1993)
12. E.M. Woo, Y.T. Hsieh, W.T. Chen, N.T. Kuo, L.Y. Wang, Immiscibility–miscibility phase transformation in blends of poly(ethylene succinate) with poly(L-lactic acid)s of different molecular weights. Journal of Polymer Science Part B: Polymer Physics, 48(11): p. 1135-1147 (2010)
13. E. Blümm, A.J. Owen, Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends. Polymer, 36(21): p. 4077-4081 (1995)
14. M.L. Focarete, M. Scandola, P. Dobrzynski, M. Kowalczuk, Miscibility and mechanical properties of blends of (l)-Lactide copolymers with atactic poly(3-hydroxybutyrate). Macromolecules, 35(22): p. 8472-8477 (2002)
15. S. Nurkhamidah, E.M. Woo, Cracks and ring bands of poly(3-hydroxybutyrate) on precrystallized poly(l-lactic acid) template. Industrial & Engineering Chemistry Research, 50(8): p. 4494-4503 (2011)
16. D.F. Varnell, E.J. Moskala, P.C. Painter, M.M. Coleman, On the application of fourier transform infrared spectroscopy to the elucidation of specific interactions in miscible polyester‐poly (vinyl chloride) blends. Polymer Engineering & Science, 23(12): p. 658-662 (1983)
17. A. Eisenberg, M. Hara, A review of miscibility enhancement via ion-dipole interactions. Polymer Engineering & Science, 24(17): p. 1306-1311 (1984)
18. M. Aubin, Y. Bédard, M.F. Morrissette, R.E. Prud'homme, Miscible blends prepared from two crystalline polymers. Journal of Polymer Science: Polymer Physics Edition, 21(2): p. 233-240 (1983)
19. C.P. Chiang, E.M. Woo, Solvent effects on phase behavior with false UCST in blends of PVPh with aliphatic polyesters. European Polymer Journal, 42(8): p. 1875-1884 (2006)
20. T.K. Mandal, E.M. Woo, Marginal miscibility and solvent-dependent phase behavior in solution-blended poly(vinyl methyl ether)/poly(benzyl methacrylate). Macromolecular Chemistry and Physics, 200(5): p. 1143-1149 (1999)
21. R.d.P. Daubeny, C. Bunn, The crystal structure of polyethylene terephthalate. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 226(1167): p. 531-542 (1954)
22. S. Poulin-Dandurand, S. Pérez, J.F. Revol, F. Brisse, The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction. Polymer, 20(4): p. 419-426 (1979)
23. R.M. Ho, K.Z. Ke, M. Chen, Crystal structure and banded spherulite of poly(trimethylene terephthalate). Macromolecules, 33(20): p. 7529-7537 (2000)
24. I.H. Hall, M.G. Pass, N.N. Rammo, The structure and properties of oriented fibers of poly(pentamethylene terephthalate). I. Synthesis of polymer and preparation of two different crystalline phases. Journal of Polymer Science: Polymer Physics Edition, 16(8): p. 1409-1418 (1978)
25. I.H. Hall, N.N. Rammo, The structure and properties of oriented fibers of poly(pentamethylene terephthalate). II. Structural analysis of two different crystalline phases by x-ray crystallography. Journal of Polymer Science: Polymer Physics Edition, 16(12): p. 2189-2214 (1978)
26. A.K. Ghosh, E.M. Woo, Y.S. Sun, L.T. Lee, M.C. Wu, Characterization and analyses on complex melting, polymorphism, and crystal phases in melt-crystallized poly(hexamethylene terephthalate). Macromolecules, 38(11): p. 4780-4790 (2005)
27. K.C. Yen, E.M. Woo, K. Tashiro, Microscopic fourier transform infrared characterization on two types of spherulite with polymorphic crystals in poly(heptamethylene terephthalate). Macromolecular Rapid Communications, 31(15): p. 1343-1347 (2010)
28. Y.G. Jeong, S.C. Lee, K. Shin, Crystal structure of poly(octamethylene terephthalate) determined by X-ray fiber diffraction and molecular modeling. Journal of Polymer Science Part B: Polymer Physics, 47(3): p. 276-283 (2009)
29. J. Bateman, R.E. Richards, G. Farrow, I.M. Ward, Molecular motion in polvethylene terephthalate and other glycol terephthalate polymers. Polymer, 1(0): p. 63-71 (1960)
30. Z. Gan, H. Abe, Y. Doi, Temperature-induced polymorphic crystals of poly(butylene adipate). Macromolecular Chemistry and Physics, 203(16): p. 2369-2374 (2002)
31. L. Zhao, X. Wang, L. Li, Z. Gan, Structural analysis of poly(butylene adipate) banded spherulites from their biodegradation behavior. Polymer, 48(20): p. 6152-6161 (2007)
32. E.M. Woo, L.Y. Wang, S. Nurkhamidah, Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form. Macromolecules, 45(3): p. 1375-1383 (2012)
33. K. Yen, E.M. Woo, Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin. Polymer Bulletin, 62(2): p. 225-235 (2009)
34. L. Chang, E.M. Woo, Effects of molten poly(3-hydroxybutyrate) on crystalline morphology in stereocomplex of poly(L-lactic acid) with poly(D-lactic acid). Polymer, 52(1): p. 68-76 (2011)
35. T. Kabe, T. Sato, K.-i. Kasuya, T. Hikima, M. Takata, T. Iwata, Transition of spherulite morphology in a crystalline/crystalline binary blend of biodegradable microbial polyesters. Polymer, 55(1): p. 271-277 (2008)
36. G. Lugito, E. Woo, Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy. Colloid and Polymer Science, 291(4): p. 817-826 (2013)
37. X. Wang, R.E. Prud'homme, Differences between stereocomplex spherulites obtained in equimolar and non-equimolar poly(L-lactide)/poly(D-lactide) blends. Macromolecular Chemistry and Physics, 212(7): p. 691-698 (2011)
38. H. Song, Y. Niu, J. Yu, J. Zhang, Z. Wang, J. He, Preparation and morphology of different types of cellulose spherulites from concentrated cellulose ionic liquid solutions. Soft Matter, 9(11): p. 3013-3020 (2013)
39. J. Marentette, G. Brown, Polymer spherulites: I. Birefringence and morphology. Journal of chemical education, 70(6): p. 435 (1993)
40. A. Shtukenberg, E. Gunn, M. Gazzano, J. Freudenthal, E. Camp, R. Sours, E. Rosseeva, B. Kahr, Bernauer′s bands. ChemPhysChem, 12(8): p. 1558-1571 (2011)
41. H.D. Keith, F.J. Padden, The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. Journal of Polymer Science, 39(135): p. 101-122. (1959)
42. H.D. Keith, F.J. Padden, The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of the spherulites. Journal of Polymer Science, 39(135): p. 123-138 (1959)
43. H.D. Keith, F.J. Padden, Banding in polyethylene and other spherulites. Macromolecules, 29(24): p. 7776-7786 (1996)
44. H.D. Keith, F.J. Padden Jr, Twisting orientation and the role of transient states in polymer crystallization. Polymer, 25(1): p. 28-42 (1984)
45. B. Wang, C.Y. Li, J. Hanzlicek, S.Z.D. Cheng, P.H. Geil, J. Grebowicz, R.-M. Ho, Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales. Polymer, 42(16): p. 7171-7180 (2001)
46. M. Kunz, M. Drechsler, M. Möller, On the structure of ultra-high molecular weight polyethylene gels. Polymer, 36(7): p. 1331-1339 (1995)
47. E. Gunn, R. Sours, J.B. Benedict, B. Kahr, Mesoscale chiroptics of rhythmic precipitates. Journal of the American Chemical Society, 128(44): p. 14234-14235 (2006)
48. G. Lugito, E.M. Woo, Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly (ethylene adipate) with phenoxy. Colloid and Polymer Science, 291(4): p. 817-826 (2013)
49. S. Nurkhamidah, E.M. Woo, Unconventional non‐birefringent or birefringent concentric ring‐banded spherulites in poly (L‐lactic acid) thin films. Macromolecular Chemistry and Physics, 214(6): p. 673-680 (2013)
50. Z. Wang, G.C. Alfonso, Z. Hu, J. Zhang, T. He, Rhythmic growth-induced ring-banded spherulites with radial periodic variation of thicknesses grown from Poly(ε-caprolactone) solution with constant concentration. Macromolecules, 41(20): p. 7584-7595 (2008)
51. Z. Wang, Z. Hu, Y. Chen, Y. Gong, H. Huang, T. He, Rhythmic growth-induced concentric ring-banded structures in poly(ε-caprolactone) solution-casting films obtained at the slow solvent evaporation rate. Macromolecules, 40(12): p. 4381-4385 (2007)
52. Y. Zhang, X. Liao, X. Luo, S. Liu, Q. Yang, G. Li, Concentric ring-banded spherulites of six-arm star-shaped poly (ε-caprolactone) via subcritical CO2. RSC Advances, 4: p. 10144-10150 (2014)
53. J. Chen, D. Yang, Phase behavior and rhythmically grown ring-banded spherulites in blends of liquid crystalline poly(aryl ether ketone) and poly(aryl ether ether ketone). Macromolecules, 38(8): p. 3371-3379 (2005)
54. Y. Duan, Y. Zhang, S. Yan, J.M. Schultz, In situ AFM study of the growth of banded hedritic structures in thin films of isotactic polystyrene. Polymer, 46(21): p. 9015-9021 (2005)
55. S. Huang, H. Li, H. Wen, D. Yu, S. Jiang, G. Li, X. Chen, L. An, Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(l-lactide) and ring banded supra-structures with radial periodic variation of thickness. CrystEngComm, 16(1): p. 94-101 (2014)
56. A.G. Shtukenberg, X. Cui, J. Freudenthal, E. Gunn, E. Camp, B. Kahr, Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites. Journal of the American Chemical Society, 134(14): p. 6354-6364 (2012)
57. A. Shtukenberg, J. Freundenthal, E. Gunn, L. Yu, B. Kahr, Glass-crystal growth mode for testosterone propionate. Crystal Growth & Design, 11(10): p. 4458-4462 (2011)
58. X. Cui, A.L. Rohl, A. Shtukenberg, B. Kahr, Twisted aspirin crystals. Journal of the American Chemical Society, 135(9): p. 3395-3398 (2013)