簡易檢索 / 詳目顯示

研究生: 蔡凱翔
Tsai, Kai-Hsiang
論文名稱: 毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製
Design of Millimeter-Wave, Dual-Band and Polarization-Diversity CMOS On-Chip Antennas
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 50-100-GHz60-GHz77-GHz天線寬頻雙頻線性漸進式槽孔對數週期毫米波射頻晶片
外文關鍵詞: 50-100-GHz, 60-GHz, 77-GHz, antenna, broadband, CMOS, dual-band, linear tapered slot, log-periodic, millimeter-wave, on-chip, Yagi
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計製作毫米波CMOS射頻晶片嵌入式天線,內文包含有50-100–GHz寬頻CMOS對數週期天線、60-/77-GHz雙頻CMOS Yagi天線、60-GHz CMOS線性漸進式槽孔天線及60-GHz CMOS極化分集天線。設計之寬頻對數週期天線採用TSMC CMOS 0.18-μm製程,主要以筆直連結饋入型態之偶極子陣列實現完成;雙頻指向性Yagi天線採用TSMC CMOS 0.18-μm製程,該架構彚整傳統Yagi天線與線性偶極子陣列的設計概念實現雙頻帶的指向性天線特性;60-GHz線性漸進式槽孔天線採用TSMC CMOS 0.18-μm製程,其以線性漸進的開槽型態實現一60-GHz高指向性天線設計;60-GHz極化分集天線則採用TSMC CMOS 90-nm製程,該設計整合60-GHz水平、垂直極化天線與一60-GHz極化切換電路實現選擇不同極化天線做訊號接收的機制。天線架構皆以平面方式實現。由於設計之天線架構以及on-wafer量測方式的考量,設計之天線訊號饋入系統皆以共面波導饋入方式完成設計。天線設計部份使用Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,量測部份則採以on-wafer方式進行。其中,根據所預計量測的特性參數不同,相關的量測方法與設置亦有所調整。

    This thesis presents the design of millimeter-wave CMOS on-chip antennas, including 60-/77-GHz dual-band and polarization-diversity on-chip antennas. The CMOS on-chip antennas are fabricated with TSMC CMOS 0.18-μm and TSMC CMOS 90-nm standard processes. The three-dimensional (3-D) EM simulator HFSS is used for design simulation. First of all, a 50-100–GHz broadband CMOS on-chip log-periodic antenna is presented, which consists of a sequence of side-by-side parallel linear dipoles to achieve broadband and high-directivity properties. Secondly, a 60-/77-GHz dual-band CMOS on-chip Yagi antenna is presented. From the concept of traditional Yagi antenna and array theory, the designed dual-band Yagi antenna is composed of two dipoles, which is also in the form of side-by-side parallel linear dipoles. Then, a 60-GHz CMOS on-chip linear tapered slot antenna is presented with the design of the two sides of the antenna corrugated with rectangular gratings. It is shown that the antenna power gain and the F/B ratio have been greatly improved. Finally, a 60-GHz CMOS polarization-diversity antenna with a T/R switch is presented. It consists of two orthogonal planar Yagi antennas for vertical and horizontal polarization and selected by a 60-GHz polarization-switching circuit. The measured performances of four designed millimeter-wave CMOS on-chip antennas are all performed by the on-wafer measurement setup.

    第一章 緒論 1 1.1 研究動機與背景 1 1.2 毫米波(Millimeter Wave)簡介 2 1.3 60-GHz短距離無線通訊系統(WPAN)簡介 3 1.4 77-GHz汽車防撞雷達系統簡介 5 1.5 論文架構 7 第二章 50-100–GHz寬頻CMOS對數週期射頻晶片嵌入式天線 9 2.1 寬頻對數週期天線基本原理 9 2.1.1 平面印刷與線型架構(Planar and Wire Surfaces) 9 2.1.2 偶極子陣列(Dipole Array) 11 2.2 50-100–GHz寬頻CMOS對數週期射頻晶片嵌入式天線 14 2.2.1 架構簡介 14 2.2.2 設計流程與考量 16 2.2.3 模擬與量測結果 17 2.3 結果與討論 26 第三章 60-/77-GHz雙頻CMOS射頻晶片嵌入式Yagi天線 29 3.1 Yagi天線與偶極子陣列 29 3.1.1 Yagi天線基本原理 29 3.1.2 線性偶極子陣列天線基本原理 30 3.2 60-/77-GHz雙頻指向性CMOS射頻晶片嵌入式Yagi天線 31 3.2.1 架構簡介 31 3.2.2 設計流程與考量 34 3.2.3 模擬與量測結果 35 3.3 結果與討論 44 第四章 60-GHz CMOS線性漸進式槽孔射頻晶片嵌入式天線 47 4.1 漸進式槽孔天線基本原理 47 4.2 60-GHz CMOS線性漸進式槽孔射頻晶片嵌入式天線 49 4.2.1 架構簡介 50 4.2.2 設計流程與考量 51 4.2.3 模擬與量測結果 52 4.3 結果與討論 60 第五章 60-GHz CMOS極化分集射頻晶片嵌入式天線 63 5.1 架構簡介 63 5.1.1 設計流程與考量 65 5.2 模擬與量測結果 67 5.3 結果與討論 79 第六章 結論 81 參考文獻 83 附錄A 共面波導(Coplanar Waveguide, CPW)與共面帶線 (Coplanar Stripline)簡介 87 附錄B 偶極子天線(Dipole)簡介[6][24] 91 附錄C 射頻晶片嵌入式天線功率增益方法 95 C.1 VSWR與利用兩相同射頻晶片天線量測功率增益方法 95 C.1.1 考慮量測探針機台之金屬平台效應(metallic-plate effect) 97 C.2 射頻晶片天線輻射場型量測方法 100

    [1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
    [2] RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
    [3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
    [4] R. H. DuHamel and D. E. Isbell, “Broadband logarithmically periodic antenna structures,” IRE National Convention Record, pt. 1, pp. 119-128, March 1957.
    [5] D. E. Isbell, “Log periodic dipole arrays,” IRE Trans. Antennas Propag., vol. AP-8, pp. 260-267, May 1960.
    [6] C. A. Balanis, Antenna Theory and Design, 3rd ed. New York: Wiley, 2005.
    [7] H. K. Kan, R. B. Waterhuse, A. M. Abbosh and M. E. Bialkowski, “Simple broadband planar CPW-fed quasi-Yagi Antenna,” IEEE Antennas and Wireless Propag. Lett., vol. 6, Apr. 2007.
    [8] G. Zheng, A. A. Kishk, A. W. Glisson and A. B. Yakovlev, “Simplified feed for modified printed Yagi antenna,” IET Electron. Lett., vol. 40, no. 8, Apr. 2004.
    [9] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz, “A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Trans. Antennas Propag., vol. 52, no. 5, Apr. 2004.
    [10] K. M. K. H. Leong, Y. Qian and T. Itoh, “First demonstration of a conductor backed coplanar waveguide fed quasi-Yagi antenna,” in IEEE AP-S Int. Symp. Dig., July 2000, pp. 1432-1435.
    [11] Y. Qian, W. R. Deal, N. Kaneda and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” IET Electron. Lett., vol. 34, no. 23, Nov. 1998.
    [12] J. Sor, Y. Qian and T. Itoh, “Coplanar waveguide fed quasi-Yagi antenna,” IET Electron. Lett., vol. 26, no. 1, Jan. 2000.
    [13] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse and T. Itoh, “A broad-band planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, Apr. 2002.
    [14] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, New York: Wiley, 2001.
    [15] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Washington, 1996.
    [16] K. Tilley, X. - D. Wu and K. Chang, “Coplanar waveguide fed coplanar strip dipole antenna,” IET Electron. Lett., vol. 30, no. 3, Feb. 1994.
    [17] C. J. Panagamuwa, J. C. Vardaxoglou, “Optically reconfigurable balanced dipole antenna,” in Int. Conf. Antennas Propag., Apr. 2003, pp. 237 - 240.
    [18] Dimitrios E. Anagnostou, Matt Morton, John Papapolymerous, Christos G. Christodoulou, “A 0-55-GHz Coplanar Waveguide to Coplanar Strip Transition,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 1-6, Jan. 2008.
    [19] S. G. Mao , C. T. Hwang , R. B. Wu and C. H. Chen “Analysis of coplanar waveguide-to-coplanar stripline transitions,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 23, Jan. 2000.
    [20] K. Lu, “An efficient method for analysis of arbitary nonuniform transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 9-14, Jan. 1997.
    [21] R. N. Simons and R. Q. Lee, “On - Wafer Characterization of Millimeter - Wave Antennas for Wireless Applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92-96, Jan. 1999.
    [22] Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip Antennas for 60-GHz Radios in Silicon Technology,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
    [23] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz Millimeter-Wave CPW-Fed Yagi–Antenna Fabricated Using 0.18-μm CMOS Technology,” IEEE Electron Device Lett., vol. 29, no. 6, pp 625-627, June 2008.
    [24] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998.
    [25] R. Janaswamy and D. H. Schaubert, “analysis of the tapered slot antennas,” IEEE Trans. Antennas Propag., vol. AP-35, no. 9, pp. 1058-1065, Sep. 1987.
    [26] P. J. Gibson, “The Vivaldi aerial,” in Proc. 9th European Microw. Conf., March 1979, pp. 101-105.
    [27] F. J. Zucker, “Surface – and Leaky-Wave Antennas,” in Antenna Engineering Handbook, H. Jasik, Ed. New York: McGraw-Hill, 1961.
    [28] K. S. Yngvesson, T. L. Korzeniowski, Y. S. Kim, E. L. Kollberg and J. F. Johansson, “The tapered slot antenna – a new integrated element for millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 2, Feb. 1989.
    [29] S. Sugawara, Y. Maita, K. Adachi, K. Mori and K. Mizuno, “A MM-Wave Tapered Slot Antenna with Improved Radiation Pattern,” in IEEE MTT-S Int. Microw. Symp. Dig., June 1997, pp. 533-536.
    [30] H. R. Chuang, L. C. Kuo, “3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 374-381, Feb. 2003.
    [31] A. P. Feresidis, G. Goussetis, S. Wang and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp 209-215, Jan. 2005.
    [32] D. N. Elsheakh, H. A. Elsadek, E. A. Abdallah, M. F. Iskander and H. Elhenawy, “Ultrawide bandwidth umbrella-shaped microstrip monopole antenna using spiral artificial magnetic conductor(SAMC),” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1255-1258, 2009
    [33] C. Liu, Y. Lu, C. Du, J. Cui and X. Shen, “The broadband spiral antenna design based on hybrid backed-cavity,” IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1876-1882, June 2010.
    [34] C. P Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
    [35] H. C. Liu, T. S. Horng and N. G. Alexopoulous, “Radiation of printed antennas with a coplanar waveguide feed,” IEEE Trans. Antennas Propag., vol. 10, pp. 1143-1148, Oct. 1995.
    [36] J. W. Greiser, “Coplanar stripline antenna,” Microwave Journal, vol. 21, pp. 47-49, 1976.
    [37] Y. Huang and K. Boyle, Antenna From Theroy to Practice, 1st ed. John Wiley and Sons Ltd, 2008.
    [38] D. M. Pozar, Microwave and RF Design of Wireless Systems, John Wiley and Sons Ltd, 2001.
    [39] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems, John Wiley and Sons Ltd, 1999.

    下載圖示 校內:2011-08-30公開
    校外:2011-08-30公開
    QR CODE