| 研究生: |
楊明臻 Yang, Ming-Chen |
|---|---|
| 論文名稱: |
Bcl-2在五氯酚代謝產物促癌機制中扮演的角色及其他相關訊號傳遞路徑探討 Investigate the Possible Role of Bcl-2 in Pentachlorophenol Metabolite-Induced Tumor Promotion and Elucidate the Signaling Mechanisms During the Apoptotic Process |
| 指導教授: |
王應然
Wang, Ying-Jan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 細胞凋亡 、四氯對苯二酚 、促癌作用 、訊號傳遞 |
| 外文關鍵詞: | signaling pathway, tumor promotion, apoptosis |
| 相關次數: | 點閱:172 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
五氯酚(PCP, pentachlorophenol)為一種常被使用於木材保存劑及殺草劑備製的化學物質,已被證實是一種環境污染物,其代謝產物四氯對苯二酚TCHQ (tetrachlorohydroquinone)一直被認為是五氯酚的主要毒性來源。在過去的研究中發現TCHQ在小鼠的致癌模式中扮演promoter的角色,但是對於其中的機制仍不清楚,因此本篇的研究目的在於探討Bcl-2蛋白在TCHQ誘發細胞凋亡中所扮演的角色,同時探討其他可能導致細胞凋亡之訊號傳遞路徑。使用正常及Bcl-2過度表現的兩株NIH3T3細胞進行實驗,在研究中發現,經TCHQ處理後可引發Bcl-2表現量的增加,而Bcl-2的過度表現又可抑制細胞凋亡,因此推測TCHQ的promotion作用可能與促進Bcl-2表現量的增加有直接的關係。在給予TCHQ的NIH3T3細胞中可以明顯觀察到活性氧物種(ROS)的增加,DNA損傷及細胞凋亡的發生,而在Bcl-2過度表現的NIH3T3細胞中則發現DNA損傷及細胞凋亡的程度降低,但卻不能有效降低ROS的量,因此推測Bcl-2的作用是在ROS生成的下游位置。另一方面,在訊號傳遞路徑的研究中主要針對與DNA損傷有直接相關的兩條路徑作探討,即ATM (ataxia telangiectasia mutated)-dependent pathway和MAPK (mitogen-activated protein kinases) pathway。TCHQ可引發NIH3T3細胞ATM蛋白的表現,但卻沒有觀察到下游p53及Bax等蛋白的累積,且加入wortmannin (ATM-inhibitor)後細胞凋亡的現象並沒有明顯的下降,但是卻可以觀察到與MAPK有關的phospho-p38和phospho-JNK表現量增加。根據以上結果推測,四氯對苯二酚引起細胞凋亡的訊號傳遞路徑可能與MAPK pathway有較直接的關係。
Tetrachlororhydroquinone (TCHQ) is the major toxic metabolite of widely used wood preservative pentachlorophenol (PCP). Recently, we found that TCHQ was a promoter in a mouse skin carcinogenesis model. However, the mechanism is still not clear. In this study, we intended to discover the role of Bcl-2 in TCHQ-induced apoptosis and its related possible signaling pathways. Over-expression of Bcl-2 effectively suppresses TCHQ-induced apoptosis in NIH3T3 cells, as evidenced by morphological changes and DNA fragmentation. Although production of reactive oxygen species (ROS) contributes to TCHQ-induced apoptosis, Bcl-2 fails to attenuate TCHQ-elicited increase of intracellular ROS level. In addition, over-expressed Bcl-2 provides only partial protection against TCHQ-induced cellular DNA damage. These data suggest that Bcl-2 prevents TCHQ-induced apoptosis at the downstream of oxidative damage events. Interestingly, TCHQ induced a significant up-regulation of Bcl-2 expression, and over-expressed Bcl-2 can inhibit TCHQ induced apoptosis. Thus, our results suggest TCHQ-induced tumor promotion may be through a mechanism of up-regulation of Bcl-2 protein and subsequent apoptosis inhibition. On the other hand, we found that TCHQ increased ATM (ataxia telangiectasia mutated) protein expression, but did not induce downstream p53 accumulation and Bax up-regulation. We also found that TCHQ induced both phospho-p38 and phospho-JNK expression, which belongs to MAPK (mitogen-activated protein kinases) cascade pathway. According to these results, the possible signaling pathway of TCHQ-induced apoptosis may relate to MAPK pathway instead of ATM-dependent pathway.
1. Seiler, J.P., Pentachlorophenol. Mutation Research, 1991.257(1) p. 27-47.
2. Hattemer-Frey, H.A. and C.C. Travis, Pentachlorophenol: environmental partitioning and human exposure. Archives of Environmental Contamination & Toxicology, 1989.18(4) p. 482-9.
3. Kutz, F.W., et al., Selected pesticide residues and metabolites in urine from a survey of the U.S. general population. Journal of Toxicology & Environmental Health, 1992.37(2) p. 277-91.
4. Leet, T.L. and J.J. Collins, Chloracne and pentachlorophenol operations. American Journal of Industrial Medicine, 1991.20(6) p. 815-8.
5. Gasiewicz, T.A., Hayes, W. J., Jr. and Laws, E. R., Jr., Handbook of Pesticide Toxicology.Vol.Nitro compounds and related phenolic pesticides.1991?Academic Press.6-70.
6. Wagner, S.L., Clinical Toxicology of Agricultural Chemicals.1981?Corvallis, OR.?Oregon State University Environmental Health Sciences Center.6-71.
7. Dimich-Ward, H., Hertzman, C., Teschke, K., Hershler, R., Marion, S. A., Ostry, A., Kelly, S., Reproductive effects of paternal exposure to chlorophenate wood preservatives in the sawmill industry.[comment][erratum appears in Scand J Work Environ Health 1998 Oct;24(5):416]. Scandinavian Journal of Work, Environment & Health, 1996.22(4) p. 267-73.
8. Report., D., Toxicological Profile for Pentachlorophenol..1992?U.S. Agency for Toxic Substance and Disease Registry.?Atlanta, GA,.
9. Anonymous., Pentachlorophenol, IARC Monographs on the Evaluation of Carcinigenic Risks to Humans..1991.p.371-402.
10. Juhl, U., I. Witte, and W. Butte, Metabolism of pentachlorophenol to tetrachlorohydroquinone by human liver homogenate. Bulletin of Environmental Contamination & Toxicology, 1985.35(5) p. 596-601.
11. Zhu, B.Z., N. Kitrossky, and M. Chevion, Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction. Biochemical & Biophysical Research Communications, 2000.270(3) p. 942-6.
12. Lin, P.H., Nakamura, J., Yamaguchi, S., La, D. K., Upton, P. B., Swenberg, J. A., Induction of direct adducts, apurinic/apyrimidinic sites and oxidized bases in nuclear DNA of human HeLa S3 tumor cells by tetrachlorohydroquinone. Carcinogenesis, 2001.22(4) p. 635-9.
13. Wang, Y.J., Ho, Y. S., Jeng, J. H., Su, H. J., Lee, C. C., Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chemico Biological Interactions, 2000.128(3) p. 173-88.
14. Witte, I., Zhu, B. Z., Lueken, A., Magnani, D., Stossberg, H., Chevion, M., Protection by desferrioxamine and other hydroxamic acids against tetrachlorohydroquinone-induced cyto- and genotoxicity in human fibroblasts. Free Radical Biology & Medicine, 2000.28(5) p. 693-700.
15. Carstens, C.P., J.K. Blum, and I. Witte, The role of hydroxyl radicals in tetrachlorohydroquinone induced DNA strand break formation in PM2 DNA and human fibroblasts. Chemico Biological Interactions, 1990.74(3) p. 305-14.
16. Ehrlich, W., The effect of pentachlorophenol and its metabolite tetrachlorohydroquinone on cell growth and the induction of DNA damage in Chinese hamster ovary cells. Mutation Research, 1990.244(4) p. 299-302.
17. Dahlhaus, M., E. Almstadt, and K.E. Appel, The pentachlorophenol metabolite tetrachloro-p-hydroquinone induces the formation of 8-hydroxy-2-deoxyguanosine in liver DNA of male B6C3F1 mice. Toxicology Letters, 1994.74(3) p. 265-74.
18. Nathan, C.F. and R.K. Root, Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. Journal of Experimental Medicine, 1977.146(6) p. 1648-62.
19. Keisari, Y., L. Braun, and E. Flescher, The oxidative burst and related phenomena in mouse macrophages elicited by different sterile inflammatory stimuli. Immunobiology, 1983.165(1) p. 78-89.
20. Stern, J.E., Y. Li, and W. Zhang, Nitric oxide: a local signalling molecule controlling the activity of pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Acta Physiologica Scandinavica, 2003.177(1) p. 37-42.
21. Suzuki, Y.J., H.J. Forman, and A. Sevanian, Oxidants as stimulators of signal transduction. Free Radical Biology & Medicine, 1997.22(1-2) p. 269-85.
22. Stadtman, E.R. and B.S. Berlett, Fenton chemistry. Amino acid oxidation. Journal of Biological Chemistry, 1991.266(26) p. 17201-11.
23. Dreher, D. and A.F. Junod, Role of oxygen free radicals in cancer development. European Journal of Cancer. 32A, 1996.1 p. 30-8.
24. Marchetti, P., Castedo, M., Susin, S. A., Zamzami, N., Hirsch, T., Macho, A., Haeffner, A., Hirsch, F., Geuskens, M., Kroemer, G., Mitochondrial permeability transition is a central coordinating event of apoptosis. Journal of Experimental Medicine, 1996.184(3) p. 1155-60.
25. Desagher, S. and J.C. Martinou, Mitochondria as the central control point of apoptosis. Trends in Cell Biology, 2000.10(9) p. 369-77.
26. Kelekar, A. and C.B. Thompson, Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends in Cell Biology, 1998.8(8) p. 324-30.
27. Hockenbery, D.M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., Korsmeyer, S. J., Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993.75(2) p. 241-51.
28. Nor, J.E., Christensen, J., Liu, J., Peters, M., Mooney, D. J., Strieter, R. M., Polverini, P. J., Up-Regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Research, 2001.61(5) p. 2183-8.
29. Jurgensmeier, J.M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., Reed, J. C., Bax directly induces release of cytochrome c from isolated mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 1998.95(9) p. 4997-5002.
30. Martindale, J.L. and N.J. Holbrook, Cellular response to oxidative stress: signaling for suicide and survival. Journal of Cellular Physiology, 2002.192(1) p. 1-15.
31. Chang, L. and M. Karin, Mammalian MAP kinase signalling cascades. Nature, 2001.410(6824) p. 37-40.
32. Kyriakis, J.M. and J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews, 2001.81(2) p. 807-69.
33. Adler, V., Yin, Z., Tew, K. D., Ronai, Z., Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 1999.18(45) p. 6104-11.
34. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., Ichijo, H., Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO Journal, 1998.17(9) p. 2596-606.
35. Sionov, R.V. and Y. Haupt, The cellular response to p53: the decision between life and death. Oncogene, 1999.18(45) p. 6145-57.
36. Burns, T.F. and W.S. El-Deiry, The p53 pathway and apoptosis. Journal of Cellular Physiology, 1999.181(2) p. 231-9.
37. Taylor, W.R. and G.R. Stark, Regulation of the G2/M transition by p53. Oncogene, 2001.20(15) p. 1803-15.
38. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., Vogelstein, B., A model for p53-induced apoptosis.[comment]. Nature, 1997.389(6648) p. 300-5.
39. Meplan, C., M.J. Richard, and P. Hainaut, Redox signalling and transition metals in the control of the p53 pathway. Biochemical Pharmacology, 2000.59(1) p. 25-33.
40. Shieh, S.Y., Ikeda, M., Taya, Y., Prives, C., DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 1997.91(3) p. 325-34.
41. Bulavin, D.V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., Fornace, A. J., Jr., Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO Journal, 1999.18(23) p. 6845-54.
42. Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y., and Nakamura, Y., A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage.[comment]. Nature, 2000.404(6773) p. 42-9.
43. Tibbetts, R.S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., Taya, Y., Prives, C., and Abraham, R. T., A role for ATR in the DNA damage-induced phosphorylation of p53. Genes & Development, 1999.13(2) p. 152-7.
44. Lavin, M.F., Radiosensitivity and oxidative signalling in ataxia telangiectasia: an update. Radiotherapy & Oncology, 1998.47(2) p. 113-23.
45. Yih, L.H. and T.C. Lee, Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Research, 2000.60(22) p. 6346-52.
46. Chan, P.J., Corselli, J. U., Patton, W. C., Jacobson, J. D., Chan, S. R., and King, A., A simple comet assay for archived sperm correlates DNA fragmentation to reduced hyperactivation and penetration of zona-free hamster oocytes. Fertility & Sterility, 2001.75(1) p. 186-92.
47. Jaloszynski, P., Kujawski, M., Czub-Swierczek, M., Markowska, J., Szyfter, K., Bleomycin-induced DNA damage and its removal in lymphocytes of breast cancer patients studied by comet assay. Mutation Research, 1997.385(3) p. 223-33.
48. Wispriyono, B., M. Matsuoka, and H. Igisu, Effects of pentachlorophenol and tetrachlorohydroquinone on mitogen-activated protein kinase pathways in Jurkat T cells. Environmental Health Perspectives, 2002.110(2) p. 139-43.
49. Wang, Y.J., Lee, C. C., Chang, W. C., Liou, H. B. and Ho, Y. S., Oxidative stress and liver toxicity in rats and human hepatoma cell line induced by pentachlorophenol and its major metabolite tetrachlorohydroquinone. Toxicology Letters, 2001.122(2) p. 157-69.
50. Purschke, M., H. Jacobi, and I. Witte, Differences in genotoxicity of H(2)O(2) and tetrachlorohydroquinone in human fibroblasts. Mutation Research, 2002.513(1-2) p. 159-67.
51. Liu, Y., L. Naumovski, and P. Hanawalt, Nucleotide excision repair capacity is attenuated in human promyelocytic HL60 cells that overexpress BCL2. Cancer Research, 1997.57(9) p. 1650-3.
52. Lud Cadet, J., B. Harrington, and S. Ordonez, Bcl-2 overexpression attenuates dopamine-induced apoptosis in an immortalized neural cell line by suppressing the production of reactive oxygen species. Synapse, 2000.35(3) p. 228-33.
53. Blattner, C., A. Sparks, and D. Lane, Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Molecular & Cellular Biology, 1999.19(5) p. 3704-13.
54. Lissy, N.A., Davis, P. K., Irwin, M., Kaelin, W. G., and Dowdy, S. F., A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature, 2000.407(6804) p. 642-5.
55. Wang, Y.J., Ho, Y. S., Chu, S. W., Lien, H. J., Liu, T. H., and Lin, J. K., Induction of glutathione depletion, p53 protein accumulation and cellular transformation by tetrachlorohydroquinone, a toxic metabolite of pentachlorophenol.[erratum appears in Chem Biol Interact 1997 Aug 29;106(1):87]. Chemico Biological Interactions, 1997.105(1) p. 1-16.
56. Fuchs, S.Y., Adler, V., Buschmann, T., Yin, Z., Wu, X., Jones, S. N., and Ronai, Z., JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes & Development, 1998.12(17) p. 2658-63.
57. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A., and Davis, R. J., Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 2000.288(5467) p. 870-4.