簡易檢索 / 詳目顯示

研究生: 劉又德
Liu, You-De
論文名稱: 生醫應用嵌入式系統之設計與實作
Design and Implementation of Embedded Systems for Biomedical Applications
指導教授: 張大緯
Chang, Da-Wei
共同指導教授: 蕭富仁
Shaw, Fu-Zen
梁勝富
Liang, Sheng-Fu
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 66
中文關鍵詞: 睡眠多重睡眠電圖神經回饋微控制器無線
外文關鍵詞: sleep, Polysomnography, neurofeedback, microcontroller, wireless
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生理訊號量測在生物醫療研究以及臨床領域中都扮演重要角色。本論文提出兩組與生理訊號量測相關的嵌入式系統,兩組系統都是基於微控制器與無線通訊技術。
    第一組系統為無線模組化多重睡眠電圖系統。多重睡眠電圖系統在使用者睡眠時持續同步紀錄多個生理訊號。此系統常在醫院或睡眠中心被用來診斷睡眠障礙,然而在傳統的多重睡眠電圖系統中過多的連接線常會干擾睡眠品質。本論文提出的無線多重睡眠電圖系統由多個小型、低價且使用無線同步的訊號收集節點組成,每組節點收集小部分身體區域之特定生理訊號,藉此降低訊號纜線造成的睡眠障礙。為了驗證此系統的準確度,我們將此系統與另一市售的多重睡眠電圖系統同時設置於使用者身上進行整夜的生理訊號收錄,並且比較兩組系統收錄的訊號。實驗結果顯示,除了與市售之多重睡眠電圖有大於93%的訊號一致性之外,由於降低了訊號纜線造成的睡眠干擾,就多個主觀與客觀的睡眠品質指標而言,使用者於使用模組化多重睡眠電圖系統時有較好的睡眠舒適度。
    本論文提出的第二組系統為一組無線行動神經回饋訓練系統。神經回饋訓練近年來常被用於提升認知功能或是改善臨床症狀。現有的神經回饋系統大多為了實驗室環境所設計,利用纜線連接使用者與訓練裝置,使用者在進行訓練時並不方便。本論文提出的無線神經回饋系統由一組腦電圖分析裝置與智慧型手機透過低功耗藍牙無線技術連結而組成。我們透過一組三階段神經回饋實驗評估此一行動神經回饋訓練系統的效能。

    Recording of physiological signals plays an important role in the biomedical research and clinical fields. In this study, two embedded systems related to physiological signal recording were proposed. Both systems are based on microcontrollers (MCUs) and wireless technologies.
    The first system is a wireless modularized Polysomnography (PSG) system. PSG continuously and simultaneously records multiple physiological signals during the sleep of the subject, and it is commonly used in hospitals or sleep centers to diagnose sleep disorders. The excessive number of wired connections for traditional PSG is often a problem that leads to sleep disturbance. The proposed wireless PSG system is composed of multiple tiny, low-cost and wireless-synchronized signal acquisition nodes, and each node acquires specific physiological signals within a small body region to reduce sleep disturbance resulting from recording wires. To evaluate accuracy, the system and a commercial PSG system were mounted on subjects to simultaneously perform overnight recording, and the recorded data were compared. The results show that, in addition to high consistency (>93%) with the reference system, due to the reduction of the disturbance from recording wires, the proposed system has better comfortableness performance in terms of several objective and subjective sleep indices.
    The second system is a wireless mobile neurofeecback training system. Neurofeedback training is recently used in enhancement of cognitive function or amelioration of clinical symptoms. Most available neurofeedback systems are a laboratory design, which contains wires to the training machine, resulting in inconvenience for subjects. The proposed wireless neurofeecback system contains an EEG signal analysis device and a smartphone connected based on the Bluetooth low energy (BLE) technology. A three-stage neurofeedback experiment was performed to evaluate the performance of the mobile neurofeecback training system.

    摘要 iii Abstract v 致謝 vii Index viii List of Figures x List of Tables xii Chapter 1 Introduction 1 Chapter 2 Background 5 2.1 Polysomnography 5 2.2 Biofeedback and Neurofeedback Methods 6 2.3 Microcontrollers and Wireless Technologies 7 Chapter 3 Modularized Polysomnography System 9 3.1 System Overview 9 3.2 Hardware Architecture 12 3.2.1 Microcontroller 12 3.2.2 Storage 13 3.2.3 Amplification Circuits for Electrodes 14 3.2.4 Airflow and Respiratory Bands 15 3.2.5 Blood Oxygen Saturation 15 3.3 Firmware Implementation 18 3.3.1 Synchronization of Recording 19 3.3.2 Data Acquisition 22 3.3.3 Data Storage 22 Chapter 4 Mobile Neurofeedback Training System 23 4.1 System Overview 23 4.2 Hardware Architecture 24 4.2.1 EEG Amplification Board 24 4.2.2 Microcontroller Module 24 4.2.3 Bluetooth Low Energy Module 25 4.3 Software Implementation 27 4.3.1 EEG Signal Acquisition 27 4.3.2 Data Analysis and Wireless Transmission 28 4.3.3 Training Application 29 Chapter 5 System Evaluation 31 5.1 Evaluation of the Modularized Polysomnography System 31 5.1.1 Board Dimension and Power Consumption 31 5.1.2 System Verification 32 5.1.3 Evaluation of System Performance 36 5.2 Evaluation of the Mobile Neurofeedback Training System 41 5.2.1 Task Timing 41 5.2.2 Board Dimension and Power Consumption 42 5.2.3 System Validation and Performance Evaluation 43 5.2.4 Assessment of Cognitive Functions 48 Chapter 6 Discussions and Conclusions 54 References 60

    [1] H.-T. Cheng and W. Zhuang, “Bluetooth-enabled in-home patient monitoring system: early detection of Alzheimer's disease,” IEEE Wireless Communications, vol. 17, no. 1, pp. 74-79, 2010.
    [2] D.-W. Chang, Y.-D. Liu, C.-P. Young, J.-J Chen, Y.-H. Chen, C.-Y. Chen, Y.-C. Hsu, F.-Z. Shaw, and S.-F. Liang, “Design and implementation of a modularized polysomnography system,” IEEE Trans. Instrum. Meas., vol. 61, no. 7, pp. 1933-1944, 2012.
    [3] L.-H. Wang, T.-Y. Chen, K.-H. Lin, Q. Fang, and S.-Y. Lee, “Implementation of a wireless ECG acquisition SoC for IEEE802.15.4 (ZigBee) applications,” IEEE J. Biomed. Health Inform., [Online] available: IEEE Xplore, doi: 10.1109/JBHI.2014.2311232.
    [4] C.-T. Lin, C.-J. Chang, B.-S. Lin, S.-H. Hung, C.-F. Chao, and I-J. Wang, “A real-time wireless brain–computer interface system for drowsiness detection,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 4, pp. 214-222, 2010.
    [5] K. Li and S. Warren, “A wireless reflectance pulse oximeter with digital baseline control for unfiltered photoplethysmograms,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 269-278, 2012.
    [6] C.-T. Lin, C.-H. Chuang, C.-S. Huang, S.-F. Tsai, S.-W. Lu, Y.-H. Chen, and L.-W. Ko, “Wireless and wearable EEG system for evaluating driver vigilance,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 165-176, 2014.
    [7] R. Stickgold, “Sleep-dependent memory consolidation,” Nature, vol. 437, no. 7063, pp. 1272-1278, 2005.
    [8] H. R. Colten and B. M. Altevogt, Eds., Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. Washington, DC: National Academies Press, 2006.
    [9] A. Rechtschaffen and A. Kales, Eds., A Manual of Standardized Terminology, Techniques and Scoring System for Sleep stages of Human Subjects. Washington, DC: US Government Printing Office, US Public Health Service, 1968.
    [10] K. E. Bloch, “Polysomnography: a systematic review,” Tech. and Health Care, vol. 5, no. 4, pp. 285-305, 1997.
    [11] T. Penzel and R. Conradt, “Computer based sleep recording and analysis,” Sleep Med., vol. 4, no. 2, pp. 131-148, 2000.
    [12] S. T. Herman; T. S. Walczak, and C.W. Bazil, “Distribution of partial seizures during the sleep-wake cycle: differences by seizure onset site,” Neurology, vol. 56, no. 11, pp. 1453-1459, 2001.
    [13] B. F. Skinner, The Behavior of Organisms: An Experimental Analysis. Oxford, England: Appleton-Century, 1938.
    [14] A. P. Sutarto, M. N. Wahab, and N. M. Zin, ”Effect of biofeedback training on operator's cognitive performance,” Work, vol. 44, no. 2, pp. 231-243, 2013.
    [15] A. L. Hassett, D. C. Radvanski, E. G. Vaschillo, B. Vaschillo, L. H. Sigal, M. K. Karavidas, S. Buyske, and P. M. Lehrer. “A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia,” Appl. Psychophysiol. Biofeedback., vol. 32, no. 1, pp. 1-10, 2007.
    [16] M. Siepmann, V. Aykac, J. Unterdörfer, K. Petrowski, and M. Mueck-Weymann. “A pilot study on the effects of heart rate variability biofeedback in patients with depression and in healthy subjects,” Appl. Psychophysiol. Biofeedback., vol. 33, no. 4, pp. 195-201, 2008.
    [17] M. Sakakibara, J. Hayano, L. O. Oikawa, M. Katsamanis, and P. Lehrer, ” Heart rate variability biofeedback improves cardiorespiratory resting function during sleep,” Appl. Psychophysiol. Biofeedback., vol. 38, no. 4, pp. 265-271, 2013.
    [18] M. S. Schwartz and F. Andrasik, Biofeedback: A Practitioner's Guide. New York, NY: Guilford Press, 2003.
    [19] J. L. Carter and H. L. Russell, “Use of EMG biofeedback procedures with learning disabled children in a clinical and an educational setting,” J. Learn Disabil., vol. 18, no. 4, pp. 213-216, 1985.
    [20] M. B. Sterman, R. D. Howe, and L. R. Macdonald, “Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake,” Science, vol. 167, pp. 1146-1148, 1970.
    [21] M. B. Sterman, “Neurophysiologic and clinical studies of sensorimotor EEG biofeedback training: some effects on epilepsy,” Semin. Psychiatry, vol. 5, no. 4, pp. 507-525, 1973.
    [22] M. B. Sterman and T. Egner, “Foundation and practice of neurofeedback for the treatment of epilepsy,” Appl. Psychophysiol. Biofeedback, vol. 31, no. 1, pp. 21-35, 2006.
    [23] P. J. Hauri, L. Percy, C. Hellekson, E. Hartmann, D. Russ, “The treatment of psychophysiologic insomnia with biofeedback: a replication study,” Biofeedback Self Regul., vol. 7, no. 2, pp. 223-235, 1982.
    [24] J. Lévesque, M. Beauregard, and B. Mensour, “Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study,” Neurosci Lett., vol. 394, no. 3, pp. 216-221, 2006.
    [25] D. Vernon, T. Egner, N. Cooper, T. Compton, C. Neilands, A. Sheri, and J. Gruzelier, “The effect of training distinct neurofeedback protocols on aspects of cognitive performance,” Int. J. Psychophysiol., vol. 47, no. 1, pp. 75-85, 2003.
    [26] T. Egner and J. Gruzelier, “Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance,” NeuroReport, vol. 14, no. 9, pp. 1221-1224, 2003.
    [27] A. W. Keizer, R. S. Verment, and B. Hommel, “Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval,” NeuroImage, vol. 49, no. 4, pp. 3404-3413, 2010.
    [28] B. Zoefel, R. J. Husterb, and C. S. Herrmann, “Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance,” NeuroImage, vol. 54, no. 2, pp. 1427-1431, 2011.
    [29] C. Escolano et al., “EEG-based upper alpha neurofeedback training improves working memory performance,” in Proc. 33rd Annu. Int. Conf. of the IEEE Engineering in EMBS, Boston (USA), 2011, pp. 2327-2330.
    [30] T. Dempster, D. Vernon, “Identifying indices of learning for alpha neurofeedback training,” Appl. Psychophysiol. Biofeedback., vol. 34, no. 4, pp. 309-328, 2009.
    [31] E. Angelakis, S. Stathopoulou, J. L. Frymiare, D. L. Green, J. F. Lubar, and J. Kounios, “EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly,” Clin Neuropsychol., vol. 21, no. 1, pp. 110-129, 2007.
    [32] H. Berger, “On the electroencephalogram of man,” Arch. Psychiat. Nervenkr., vol. 87, pp. 527-570, 1929.
    [33] E. D. Adrian and B. H. C. Matthews, “The Berger rhythm: potential changes from the occipital lobes in man,” Brain, vol. 57, pp. 355-385, 1934.
    [34] P. Sauseng, W. Klimesch, M. Doppelmayr, T. Pecherstorfer, R. Freunberger, and S. Hanslmayr. “EEG alpha synchronization and functional coupling during top-down processing in a working memory task,” Hum. Brain Mapp., vol. 26, no. 2, pp. 148-155, 2002.
    [35] W. Klimesch, M. Doppelmayr, and S. Hanslmayr, “Upper alpha ERD and absolute power: their meaning for memory performance,” Prog. Brain Res., vol. 159, pp. 151-165, 2006.
    [36] M. Doppelmayr, W. Klimesch, W. Stadler, D. Pöllhuber, and C. Heine, “EEG alpha power and intelligence,” Intelligence, vol. 30, no. 3, pp. 289-302, 2002.
    [37] H.-T. Cheng and W. Zhuang, “Bluetooth-enabled in-home patient monitoring system: early detection of Alzheimer's disease,” IEEE Wireless Communications, vol. 17, no. 1, pp. 74-79, 2010.
    [38] D.-W. Chang, Y.-D. Liu, C.-P. Young, J.-J Chen, Y.-H. Chen, C.-Y. Chen, Y.-C. Hsu, F.-Z. Shaw, and S.-F. Liang, “Design and implementation of a modularized polysomnography system,” IEEE Trans. Instrum. Meas., vol. 61, no. 7, pp. 1933-1944, 2012.
    [39] L.-H. Wang, T.-Y. Chen, K.-H. Lin, Q. Fang, and S.-Y. Lee, “Implementation of a wireless ECG acquisition SoC for IEEE802.15.4 (ZigBee) applications,” IEEE J. Biomed. Health Inform., [Online] available: IEEE Xplore, doi: 10.1109/JBHI.2014.2311232.
    [40] C.-T. Lin, C.-J. Chang, B.-S. Lin, S.-H. Hung, C.-F. Chao, and I-J. Wang, “A real-time wireless brain–computer interface system for drowsiness detection,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 4, pp. 214-222, 2010.
    [41] K. Li and S. Warren, “A wireless reflectance pulse oximeter with digital baseline control for unfiltered photoplethysmograms,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 269-278, 2012.
    [42] C.-T. Lin, C.-H. Chuang, C.-S. Huang, S.-F. Tsai, S.-W. Lu, Y.-H. Chen, and L.-W. Ko, “Wireless and wearable EEG system for evaluating driver vigilance,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 165-176, 2014.
    [43] H. F. Chen, et al. “A portable wireless EEG system for neurofeedback: design and implementation,” J. Biomed. Eng. Res. vol. 28, no. 4, pp. 461-470, 2007.
    [44] C. A. Otto, E. Jovanov, and E. Milenkovic, “A WBAN-based system for health monitoring at home,” in Proc. IEEE/EMBS ISSS-MDBS, 2006, pp. 20–23.
    [45] M. R. Yuce, P. C. Ng, and J. Y. Khan, “Monitoring of physiological parameters from multiple patients using wireless sensor network,” J. Med. Syst., vol. 32, no. 5, pp. 433-441, 2008.
    [46] A. Milenkovic, C. Otto, and E. Jovanov, “Wireless sensor networks for personal health monitoring: issues and an implementation,” Comput. Commun., vol. 29, no. 13–14, pp. 2521-2533, 2006.
    [47] K. Shuaib, M. Boulmalf, F. Sallabi, and A. Lakas, "Co-existence of Zigbee and WLAN - a performance study,” in Proc. IEEE/IFIP WOCN, 2006, pp.1-6.
    [48] G. Betta, D. Capriglione, L. Ferrigno, and G. Miele, “Influence of Wi-Fi computer interfaces on measurement apparatuses,” IEEE Trans. Instrum. Meas., vol. 59, no. 12, pp. 3244-3252, 2010.
    [49] C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madde, “Distributed regression: an efficient framework for modeling sensor network data,” in Proc. IEEE IPSN, 2004, pp. 1-10.
    [50] Q. Dong, W. Dargie, and A. Schill, “Effects of sampling rate on collision probability in hybrid MAC protocols in WSN,” in Proc. IEEE GLOBECOM, 2010, pp. 213-218.
    [51] M. Bazzarelli, N. G. Durdle, E. Lou, and V. J. Raso, “A wearable computer for physiotherapeutic scoliosis treatment,” IEEE Trans. Instrum. Meas., vol. 52, no. 1, pp. 126–129, 2003.
    [52] R. Lombardi, G. Coldani, G. Danese, R. Gandolfi, and F. Leporati, “Data acquisition system for measurements in free moving subjects and its applications,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 878-884, 2003.
    [53] D. Rand, J. J. Eng, P. F. Tang, J. S. Jeng, and C. Hung, “How active are people with stroke? Use of accelerometers to assess physical activity,” Stroke, vol. 40, no. 1, pp. 163-168, 2009.
    [54] C. F. George, T. W. Millar, and M. H. Kryger, “Sleep apnea and body position during sleep,’ Sleep, vol. 11, no. 1, pp. 90-99, 1988.
    [55] R. D. Cardwright, F. Diaz, and S. Lloyd, “The effects of sleep posture and sleep stage on apnea frequency,” Sleep, vol. 14, no. 4, pp. 351-353, 1991.
    [56] H. M. Braver, A. J. Block, and M. G. Perri, “Treatment for snoring. Combined weight loss, sleeping on side, and nasal spray,” Chest, vol. 107, no. 5, pp. 1283-1288, 1995.
    [57] Texas Instrument, A true system-on-chip solution for 2.4 GHz IEEE 802.15.4/ZigBee (Rev. F), [Online] available: http://www.ti.com/lit/ds/symlink/cc2430.pdf.
    [58] GHI Electronics, uALFAT user manual, [Online] available: http://www.ghielectronics.com/downloads/uALFAT/uALFAT Manual.pdf.
    [59] C. Iber, S. Ancoli-Israel, A. Chesson, and S. Quan, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specifications. Westchester, Illinois: American Academy of Sleep Medicine, 2007.
    [60] Bluetooth SIG, Inc., Bluetooth Core Specification v4.0, [Online] available: https://developer.bluetooth.org/TechnologyOverview/Pages/v4.aspx.
    [61] Texas Instrument, MSP430F543x, MSP430F541x Mixed Signal Microcontroller (Rev. C), [Online] available: http://www.ti.com/product/msp430f5438.
    [62] Nordic Semiconductor, nRF8001, µBlue, Bluetooth low energy, [Online] available: http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001.
    [63] Wahoo Fitness, Wahoo Fitness API 2.3.2, [Online] available: http://api.wahoofitness.com/.
    [64] H. Silber, S. Ancoli-Israel, M. H. Bonnet, S. Chokroverty, M. M. Grigg-Damberger, M. Hirshkowitz, S. Kapen, S. A. Keenan, M. H. Kryger, T. Penzel, M. R. Pressman, and C. Iber, “The Visual scoring of sleep in adults,” J. Clin. Sleep Med., vol. 3, no. 2, pp. 121–131, 2007.
    [65] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng., vol. 32, no. 3, pp. 230-236, 1985.
    [66] W. Schwenk, J. W. Mall, J. Neudecker, and J. M. Muller, “One visual analogue pain score is sufficient after laparoscopic cholecystectomy,” Br. J. Surg., vol. 89, no. 1, pp. 114-115, 2002.
    [67] J. Bernhard, M. Sullivan, C. Hurny, A. S. Coates, and C.-M. Rudenstam, “Clinical relevance of single item quality of life indicators in cancer clinical trials,” Br. J. Cancer, vol. 84, no. 9, pp. 1156-1165, 2001.
    [68] M. E. Wewers and N. K.Lowe, “A critical review of Visual Analogue Scales in the measurement of clinical phenomena,” Res. Nurs. Health, vol. 13, no. 4, pp. 227-236, 1990.
    [69] E. Hoddes, W. C. Dement, and V. Zarcone, “The development and use of the Stanford sleepiness scale,” Psychopharmacology, vol. 9, pp. 150, 1972.
    [70] M. Blumen, M. A. Quera-Salva, M. P. d'Ortho, K. Leroux, P. Audibert, C. Fermanian, F. Chabolle, and F. Lofaso, “Effect of sleeping alone on sleep quality in female bed partners of snorers,” Eur. Respir. J., vol. 34, no. 5, pp. 1127-1131, 2009.
    [71] A. R. Jensen and R. A. Figueroa, “Forward and backward digit span interaction with race and IQ: predictions from Jensen's theory,” J. Educ. Psychol., vol. 67, no. 6, pp. 882-893, 1975.
    [72] M. L. Perlis, D. E. Giles, W. B. Mendelson, R. R. Bootzin, and J. K. Wyatt, “Psychophysiological insomnia: The behavioral model and a neurocognitive perspective,” J. Sleep Res., vol. 6, no. 3, pp. 179-188, 1997.
    [73] M. F. Folstein, S. E. Folstein, and P. R. McHugh, “"Mini-mental state". A practical method for grading the cognitive state of patients for the clinician,” J. Psychiatr. Res., vol. 12, no. 3, pp. 189-198, 1975.
    [74] R. N. Kingshott and N. J. Douglas, “The effect of in-laboratory polysomnography on sleep and objective daytime sleepiness,” Sleep, vol. 23, no. 8, pp. 1109-1113, 2000.
    [75] B. Ambuel, K. W. Hamlett, C. M. Marx, and J. L. Blumer, “Assessing Distress in Pediatric Intensive Care Environments: The COMFORT Scale,” J. Pediatr. Psychol., vol. 17, no. 1, pp. 95-109, 1992.
    [76] S. Hanslmayr, P. Sauseng, M. Doppelmayr, M. Schabus, and W. Klimesch, “Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects,” Appl. Psychophysiol. Biofeedback, vol. 30, no. 1, pp. 1-10, 2005.
    [77] G. Pfurtscheller, A. Stancák Jr. and C. Neuper, “Event-related synchronization (ERS) in the alpha band - an electrophysiological correlate of cortical idling: a review,” Intl. J. Psychophysiol., vol. 24, no. 1-2, pp. 39-46, 1996.
    [78] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res. Rev., vol. 29, no. 2-3, pp. 169-195, 1999.
    [79] M. B. Sterman, L. R. Macdonald, and R. K. Stone, “Biofeedback training of the sensorimotor electroencephalogram rhythm in man: effects on epilepsy,” Epilepsia, vol. 15, no. 3, pp. 395-416, 1974.
    [80] J.O. Lubar and J. F. Lubar, “Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting,” Biofeedback Self. Regul., vol. 9, no. 1, pp. 1-23, 1984.
    [81] W. C. Scott, D. Kaiser, S. Othmer, and S. I. Sideroff, “Effects of an EEG biofeedback protocol on a mixed substance abusing population,” Am. J. Drug Alcohol. Abuse, vol. 31, no. 3, pp. 455-469, 2005.
    [82] W. Nan, J. P. Rodrigues, J. Ma, X. Qu, F. Wan, P. I. Mak, P. U. Mak, M. I. Vai, and A. Rosa, “Individual alpha neurofeedback training effect on short term memory,” Int. J. Psychophysiol. vol. 86, no. 1, pp. 83-87, 2012.
    [83] M. Zhang and A. A. Sawchuk, “Human daily activity recognition with sparse representation using wearable sensors,” IEEE J. Biomed. Health Inform., vol. 17, no. 3, pp. 553-560, 2013.
    [84] A. Benharref and M. A. Serhani, “Novel cloud and SOA-based framework for e-health monitoring using wireless biosensors,” IEEE J. Biomed. Health Inform., vol. 18, no. 1, pp. 46-55, 2014.
    [85] Y. Ayzenberg and R. W. Picard, “FEEL: A system for frequent event and electrodermal activity labeling,” IEEE J. Biomed. Health Inform., vol. 18, no. 1, pp. 266-277, 2014.
    [86] A. K. Triantafyllidis, V. G. Koutkias, I. Chouvarda, and N. Maglaveras, “A pervasive health system integrating patient monitoring, status logging, and social sharing,” IEEE J. Biomed. Health Inform., vol. 17, no. 1, pp. 2168-2194, 2013.
    [87] Compumedics Limited, Siesta, [Online] available: http://www.compumedics.com/product_detail.asp?id=13&item=product.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE