簡易檢索 / 詳目顯示

研究生: 林虹君
Lin, Hung-Chun
論文名稱: 二期作系統下有機與傳統稻米生產之比較
Comparisons of Organic and Conventional Rice Production with Dual Cropping System
指導教授: 福島康裕
Yasuhiro Fukushima
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 101
中文關鍵詞: 生命週期評估有機農業傳統農業稻米二期作系統
外文關鍵詞: Life cycle assessment, rice, organic agriculture, conventional agriculture, dual cropping season
相關次數: 點閱:109下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 稻米為世界第三大糧食,更是許多亞洲國家人民的主食。然而,至今對稻米工業與全球及地區環境相關的影響仍未得到相對廣泛之討論。本研究在全球暖化潛勢、水資源與能源之消耗、以及收益四個面向,以台灣水稻田為案例,運用生命週期評估之方法,對二期作系統下有機與傳統稻米的生產進行分析並提出建議。
    結果顯示,每產生一公斤白米,傳統農法較有機農法釋放出較少量之溫室氣體、消耗較少水資源,但需要較多能源:位於台南市後壁區,以傳統農法耕作的稻田,其在第一期稻作、第二期稻作、及一整年之溫室氣體釋放量為1.21、2.73、及1.85公斤二氧化碳當量;水資源消耗量為2.0、3.1、及2.5立方公尺;能源消耗量為12.71、16.53、及14.31百萬焦耳。位於花蓮縣富里鄉羅山村,以有機農法耕作的稻田,其在第一期稻作、第二期稻作、及一整年之溫室氣體釋放量為1.86、2.19、及2.02公斤二氧化碳當量;水資源消耗量為2.7、3.1、及2.9立方公尺;能源消耗量為5.15、5.20、及5.19百萬焦耳。由於產量較高,傳統農法同時也為農民帶來較高收入:位於後壁區,施行傳統農法的農民,在耕種一公頃的情況下,年淨收入為144,140新台幣;位於羅山村,施行有機農法的農民,在相同的面積下,淨年收入則為84,978新台幣。
    由於本研究所參訪的傳統與有機稻田位於不同產區,以致此二者間之不同結果亦受到農法以外的因素──例如地形以及當地氣候──所影響。在以施行傳統農法之稻田的背景條件對施行有機農法之稻田做調整後,溫室氣體排放、水資源消耗、及能源消耗此三項的結果,變為皆是有機農法所帶來的影響較大;淨年收入則仍為施行傳統農法的農民較高。
    本研究並未針對其他有機耕作方法相關的優點,例如增進農作物品質、以及降低化學合成物於土地上的殘留做出評估;這些優點帶來的影響亦有可能較其所帶來的環境衝擊重要。因此,欲完全呈現有機與傳統稻米生產對環境相關影響的差異,未來研究應就更多不同面向做討論,以提出更完善之結論與建議。且在確保相同稻米品質的前提下,做為案例研究的稻田最好位於同一個產區,且由同一位農民所耕作,以去除其他因素所可能帶來的影響。

    Rice is one of the main starch sources for populations around the world, especially in many of the Asian countries. However, its global and local environmental implications are not discussed comprehensively. A life cycle assessment (LCA) is conducted to evaluate the global warming potential, water and energy consumption, and financial flow of organic and conventional rice production with dual cropping system, based on case studies in Taiwan.
    The results show that for producing 1 kg rice, conventional farming method generates less greenhouse gases emission, and water consumption, but more energy consumption than the organic one: for conventional farms in Houbi District, Tainan City it is 1.21, 2.73, and 1.85 kg-CO2 equiv. GHGs emission; 2.0, 3.1, and 2.5 m3 water consumption; and 12.71, 16.53, and 14.31 MJ energy consumption for the 1st CS, 2nd CS, and annual emission, respectively. For organic farms in Luoshan Village, Fuli Township Hualien County it is 1.86, 2.19, and 2.02 kg-CO2 equiv. GHGs emission; 2.7, 3.1, and 2.9 m3 water consumption; and 5.15, 5.20, and 5.19 MJ energy consumption for the 1st CS, 2nd CS, and annual emission, respectively. Conventional farming method also brings more income for farmers compares with the organic method due to the higher rice yield. The annual net incomes are 144,140 and 84,978 NTD for conventional farms in Houbi and organic farms in Luoshan, respectively, with 10 fen paddy.
    However, some of the differences of the results between conventional and organic rice production is caused by other factors, such as geographic condition and local climate but not farming method itself, since the visited conventional and organic farms are located in different region. After adjusting the results of organic farms with the same condition of conventional farms, it becomes that all the GHGs emission, water and energy consumption are more for the organic rice production than the conventional one; and the net income of conventional rice cultivation is still more than the organic one.
    Other advantages usually associated with organic farming such as improving the quality of food and reduce the negative influences of chemical residue are not evaluated in this study. The benefit of organic farming brought from those advantages could be more important than the impacts. Therefore, more studies working on evaluating the difference between organic and conventional farming under different aspects is suggested, in order to show the whole picture of the influence of organic agriculture compared with the conventional one. With the same quality of rice, the visited farms should located in the same region, and even be better if they are running by the same farmer, in order to eliminate the differences caused by other factors.

    Abstract ..................................... i Chinese Abstract ............................. iii Acknowledgment ............................v Table of Contents ............................ vii Figure Index ................................ ix Table Index .................................. xi Chapter 1 Introduction ..........................1 1.1 Preface ...........................1 1.2 Motivation ....................................2 1.3 Objective ..................................3 1.4 Definition of comparison ........................3 Chapter 2 Overview of Rice Industry ...............4 2.1 Rice production in Taiwan.........................4 2.1.1 At farms ...................................4 2.1.2 At factories ..................................5 2.1.3 Situation ...................................5 2.2 Rice production in the world .......................9 2.3 Organic production ...................................11 Chapter 3 Case Study ........................12 3.1 Conventional farms ...............................12 3.2 Organic farms .......................................15 3.3 Seedling company .........................19 3.4 Mill factory .....................................20 Chapter 4 Methodology ...............................21 4.1 LCA Methodology ................................21 4.1.1 Goal and scope definition....................24 4.1.2 Life cycle inventory ...........................27 4.2 Conventional farms ...........................29 4.2.1 Field operation and machinery ....................29 4.2.2 Chemicals .......................................31 4.2.3 Seedlings ........................34 4.2.4 Irrigation ...............................34 4.2.5 Rice paddy .................................35 4.2.6 Drying and refinery ...................41 4.3 Organic farms ..............................42 4.3.1 Field operation and machinery, and drying and refinery....42 4.3.2 Organic compounds ................................42 4.3.3 Seedlings .....................................43 4.3.4 Irrigation ......................................43 4.3.5 Rice paddy .....................................43 4.4 Financial flow ............................48 Chapter 5 Results and Discussion ...............53 5.1 Conventional Farms ......................53 5.1.1 Rice cultivation ................................53 5.1.2 Rice production ........................59 5.2 Organic Farms ......................................61 5.2.1 Rice cultivation .................................61 5.2.2 Rice production ...................................67 5.3 Comparisons ........................69 5.3.1 GHGs emission ..........................69 5.3.2 Water consumption ......................75 5.3.3 Energy consumption ....................79 5.3.4 Financial flow .............................83 5.3.5 Comparison between fallow and non-fallow periods ..........85 Chapter 6 Conclusion ..............................89 References ...................................92 Appendix ................................ 100

    1. 董國昌. 台灣地區有機專賣店現況與發展趨勢. 農政與農情, 2007.
    181.
    2. 林銘洲. 98 年度有機農業推動成果. 農政與農情, 2009. 211.
    3. Meisterling, K., Samaras, C., Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production, 2009. 17(2): p. 222-230.
    4. Haas, G., Wetterich, F., Köpke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems & Environment, 2001. 83(1-2): p. 43-53.
    5. Maeder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. Soil fertility and biodiversity in organic farming. Science, 2002. 296: p. 1694-1697.
    6. Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., Shiina, T. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering, 2009. 90(1): p. 1-10.
    7. Food and Agriculture Organization of the United Nations. FAOSTAT. Available from: http://faostat.fao.org/default.aspx.
    8. Maruyama, K., Gocho, N., Moriya T., Hayashi, K. Life cycle assessment of super high-yield and conventional rice production systems: A comparison based on global warming potentioal and energy consumption. Journal of Life Cycle Assessment, Japan, 2009. 5: p. 432-438.
    9. Saleh, A.F.M., Bhuiyan, S.I. Crop and rain water management strategies for increasing productivity of rainfed lowland rice systems. Agricultural Systems, 1995. 49(3): p. 259-276.
    10.Husin, Y.A., Murdiyarso, D., Khalil, M. A. K., Rasmussen, R. A., Shearer, M. J., Sabiham, S., Sunar, A., Adijuwana, H. Methane flux from Indonesian wetland rice: the effects of water management and rice variety. Chemosphere, 1995. 31(4): p. 3153-3180.
    11. Rice trade. Available from: http://www.rice-trade.com/.
    12.United Nations Environment Programme. Global environment outlook 4.
    13. 王莫昀, 鄭閔聲. 水利會擁水自重 轉賣科技大廠? 農、工爭水 吵進
    國安會議. 中國時報. 2011/05/12.
    14. 行政院農業委員會. 因應旱象 農田水利會已啟動救旱應變措施.
    2011/05/12. Available from:
    http://www.coa.gov.tw/show_news.php?cat=show_news&serial=coa_diamond_20110512202933
    15. 行政院主計處, 94年農林漁牧普查結果統計表. Available from:
    http://www.dgbas.gov.tw/lp.asp?ctNode=3279&CtUnit=389&BaseDSD=7 &mp=1
    16. 聯發碾米工廠. 稻作流程. Available from: http://www.sj2es.tnc.edu.tw/beauty/.
    17. Interview, Personal interview with Mr. Chun-Yao Lin in mill factory of Farmers' Association of Houbi District. 2011.
    18. 行政院農業委員會農糧署, 台灣糧食統計要覽(98 年). Available from: http://www.afa.gov.tw/GrainStatistics_index.asp?CatID=44
    19. Blengini, G.A., Busto, M. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). Journal of Environmental Management, 2009. 90(3): p. 1512-1522.
    20. 有機農業全球資訊網. 我國驗證機構. Available from:
    http://info.organic.org.tw/supergood/front/bin/ptlist.phtml?Category=100989.
    21. 行政院農業委員會農糧署, 有機農產品及有機農產加工品驗證管理辦
    法. Available from: http://www.afa.gov.tw/laws_index.asp?CatID=307
    22. 台南市後壁區公所. 產業概況. Available from:
    http://web2.tainan.gov.tw/houbi/CP/10814/industry.aspx.
    23. 行政院農業委員會, 第四屆全國冠軍米王隆重誕生!「無米樂」黃崑濱
    -有米更樂!. 2006. Available from:
    http://www.afa.gov.tw/agriculture_news_look.asp?NewsID=537
    24. 中央氣象局. 氣候統計. Available from: http://www.cwb.gov.tw/.
    25. Interview, Personal interview with Mr. Yung-Ching Lai in Houbi District. 2010.
    26. Interview, Personal interview with Mr. Ming-Tsang Lee in Houbi District. 2011.
    27. 行政院農業委員會. 台灣農產品安全追溯資訊網. Available from:
    http://taft.coa.gov.tw/.
    28. 花蓮縣富里鄉公所. 特產美食. Available from:
    http://www.fuli.gov.tw/default.asp.
    29. 潘昶儒, 余宣穎,宣大平. 羅山有機村之有機農產業介紹. 花蓮區農業
    專訊. 2007. p. 11-16.
    30. Interview, Personal interview with Mr. Yun-Zhi Lin in Loushan Village. 2010.
    31. International Organization for Standardization. Environmental management – life cycle assessment – principles and framework. 2006.
    32. Intergovermental Panel on Climate Change, IPCC Fourth Assessment Report: Climate Change 2007. 2007.
    33. Interview, Personal interview with Mr. Ching-Song Lai. 2010.
    34. Ecoinvent Centre. Ecoinvent data v.2.2, Swiss Centre for Life Cycle Inventories. Dübendorf, Switzerland. 2010.
    35.National Renewable Energy Laboratory, U.S. Life-Cycle Inventory Database. 2008.
    36.DG Joint Research Centre, Institute for Environment and Sustainability. ELCD core database. 2010. European Commission.
    37. Bureau of Energy, Ministry of Economic Affairs, Taiwan. Greenhouse gases emission of fuel and electricity consumption. 2009; Available from:
    http://verity.erl.itri.org.tw/EIGIC/index.aspx.
    38. Nielsen, P.H.; Nielsen, A.M.; Weidema, B.P.; Dalgaard, R.; Halberg, N. LCA food data base. 2003. Available from: www.lcafood.dk.
    39. Volkswagen Newsletter. TDI Engine. 2009.
    40. 吳惠萍. 小地主大佃農 提升農業競爭力. 2008/12/10. Available from: http://www.npf.org.tw/post/1/5154.
    41. Bureau of Energy, Minitry of Energy Affairs, Taiwan. 2009 Annual Report. 2009 Bureau of Energy, Ministry of Economic Affairs, Taiwan: Taipei. P. 37.
    42. 李敏郎. 植物殺菌劑之使用介紹. 2008.
    43. 費雯綺, 周桃美, 陳美莉. 農藥名稱手冊 (民國96年度). 行政院農業
    委員會農業藥物毒物試驗所: 台中.
    44. 經濟部水利署. 各項用水統計資料庫. Available from: http://wuss.wra.gov.tw/
    45.Taiwan Power Company. The average price of electricity in different countries. 2009; Available from: http://www.taipower.com.tw/.
    46.Huang, S.N., Liu, J.M., Lin, C.W., Chen, S.H., Chen, W.H. Study on emission of methane from rice paddy in southern Taiwan and reduction strategies. Measurement of greenhouse gases and strategies of reduction(II). 2003. Global Change Research Center in NTU: Taipei. 135-150.
    47.Yang, S.S., Kiu, C.M., Lai, C.M., Liu, Y.L. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan. Chemosphere, 2003. 52: p. 1295-1305.
    48.Xiong, Z.Q., Xing G.X., Tsuruta, H., Shen, G.Y., Shi, S.L., Du, L.J. Measurement of nitrous oxide emissions from two rice-based cropping systems in China. Nutrient Cycling in Agroecosystems, 2002. 64(1): p. 125-133.
    49. Library of Congress. A Country Study: China: Crops. 1987; Available from: http://www.loc.gov/index.html.
    50. 譚鎮中. 台灣中南部水田土壤二氧化碳之釋放及其影響因子. 台灣地
    區大氣環境變遷. 1997. 國立台灣大學全球變遷中心和農業化學系: 台北. 207-224.
    51. 姚銘輝, 陳守泓. 水稻田二氧化碳吸存量之研究. 台灣農業研究. 2005. 54: p. 150-161.
    52. 吳富春. 水田生態環境微氣候及二氧化碳流通量模式分析. 2004.
    53. Saito, M., Miyata, A., Nagai, H., Yamada, T. Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agricultural and Forest Meteorology, 2005. 135(1-4): p. 93-109.
    54.Ahmad, S., Li, C., Dai, G., Zhan, M., Wang, J., Pan, S., Cao, C. Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil and Tillage Research, 2009. 106(1): p. 54-61.
    55. Lin, M.H., Wang, Y.P. Management of organic rice cultivation, in Taoyuan District Agricultural Research and Extension Station. 2007: Taoyuan, Taiwan.
    56. Efthimiadou, A., Bilalis, D., Karkanis, A., Froud-Williams, B., Eleftherochorinos, I. Effects of Cultural System (Organic and Conventional) on Growth, Photosynthesis and Yield Components of Sweet Corn (Zea mays L.) under Semi-Arid Environment. Notulae Botanicae Horti AgrobotaniciCluj-Napoca, 2009. 37: p. 104-111.
    57.Qin, Y., Liu, S., Guo, Y., Liu, Q., Zou, J. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biology and Fertility of Soils, 2010. 46(8): p. 825-834.
    58. Peng, D.C., Huang, S.N. Emission of methane from paddy soils and the factors in Eastern Taiwan, in Research Reports of Hualien Area. 1998. p. 35~45.
    59. Chinese Petroleum Corporation, Taiwan. Price of fuel. 2010; Available from: http://www.cpc.com.tw/big5_BD/tmtd/ListPrice/ShowHisToryPrice.asp?pn o=53.
    60. Schumacher, L.G., Borgelt, S., Russel, M.A. Fueling 5.9L and 7.3L Navistar Engines with Biodiesel-20. in Proceedings of the American Society of Agricultural Engineers Summer Meeting. 1995. Chicago.
    61. Interview, Personal interview with Mrs. Lin. 2010.
    62. Bhattacharya, S.C., Phan, H.L., Shrestha, R.M., Vu, Q.V. CO2 emissions due to fossil and traditional fuels, residues and wastes in Asia, in AIT Workshop on Global Warming Issues in Asia. 1993: Bangkok.
    63. Lin, W.H., Chen, C.H., Chang, P.L., Chin, K.T., Tseng, S.T., Lee, K.H., Chen, C.W. A study on features of high-tech industry water use and water saving technology, in Conference of Water Industry. 2006: Taipei. p. C3-21~C3-32.
    64.Hsia Lo, C.H., A Study on Rational Water Reuse Rate in High-tech Industry, in Department of Civil Engineering. 2010, National Taiwan University: Taipei.
    65. 謝梅芬, 王昭月, 周宗禎, 劉金清. 解水荒南縣擬重啟備用淨水場.
    聯合報. 2009: Taipei.
    66. Chao, C.C. Nitrous oxide emission from paddy field, upland, wetland, forest and slopeland in central and southern Taiwan and their effect factors. Research on Atmospheric Environments of Taiwan Area. 1997. Global
    Change Research Center and Department of Agricultural Chemistry, National Taiwan University: Taipei. 173-194.
    67. Chung, R.S., Liao, C.H., Lo, C.S. Methane emission from upland soils and effect of organic matter on the methane emission. Research on Atmospheric Environments of Taiwan Area. 1997. Global Change Research Center and Department of Agricultural Chemistry, National Taiwan University: Taipei.
    79-98.
    68. Lai, C.M. Nitrous oxide emissions from upland, forest soil and landfill in the northern Taiwan area and their affecting factors. Research on Atmospheric Environments of Taiwan Area. 1998, Global Change Research Center and Department of Agricultural Chemistry, National Taiwan University: Taipei. 105-117.
    69.Wang, Y.P., Shieh, S.W. Emission and environmental conditions of paddy soil, wetland, dryland, upland soil and forest soil in the central and southern Taiwan area. Research on Atmospheric Environments of Taiwan Area. 1997, Global Change Research Center and Department of Agricultural Chemistry, National Taiwan University: Taipei. 99-121.
    70.Young, C.C. Uptake and emission of greenhouse effect gases in orchard and forest soils. Research on Atmospheric Environments of Taiwan Area. 1997, Global Change Research Center and Department of Agricultural Chemistry, National Taiwan University: Taipei. 122-141.

    下載圖示 校內:2012-07-06公開
    校外:2012-07-06公開
    QR CODE