| 研究生: |
楊家瑋 Yang, Jia-Wei |
|---|---|
| 論文名稱: |
不同介電奈米粒子修飾於銀空心奈米球體陣列表面以強化SERS效應並應用於Ampicillin之檢測 Silver Hollow Nanosphere Arrays Surface-modified with Dielectric Nanoparticles to Improve the Effect of SERS and Apply for Ampicillin Detection |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 共同指導教授: |
劉浩志
Liu, Bernard HaoChih 王士豪 Wang, Shyh-Hau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | SERS 、介電材料 、LSPR效應 、氨芐西林 、殘留檢測 |
| 外文關鍵詞: | SERS, dielectric material, LSPR effect, Ampicillin, residue detection |
| 相關次數: | 點閱:139 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
殘留抗生素檢測在現今非常重要,而表面增顯拉曼散射技術(SERS)提供了高機率去檢測出微量檢測分子,使該技術獲得了更多的關注。而使用自組裝單層聚苯乙烯(PS)奈米球作為犧牲輔助模板,再用各種介電奈米粒子(HfO2,TiO2和Al2O3)去修飾的銀空心奈米球體(HNS)陣列,被證明其做為SERS活性基板的潛力。透過電子束蒸鍍沉積銀空心奈米球體和介電奈米顆粒(NP),此製造方法具有簡易,大規模生產和易於尺寸調整的優點。掃描式電子顯微鏡(SEM)圖像顯示其結構呈現六方最密排列,而原子力顯微鏡(AFM)則顯示沉積的銀外殼薄膜其表面形態和粗糙度呈現均勻分佈。源自於銀空心奈米球體間和金屬/介電界面的局部表面電漿共振(LSPR)效應,使介電奈米顆粒修飾的銀空心奈米球體系統表現出優於單獨銀空心奈米球體陣列的拉曼散射增顯效應。本研究對選用的介電材料其對SERS增顯提升效果進行了詳細的比較,在實驗結果中進行了分析及解釋,並且使用羅丹明紅(R6G)作為探測分子驗證SERS效應,證明本研究的SERS活性基板適用於拉曼散射增顯檢測。在三者基板中,以Al2O3奈米顆粒修飾的銀空心奈米球體系統顯示出最佳的增強因子(EF)為6.2×107。最後,SERS活性基板用於氨芐西林的拉曼訊號檢測,其可檢測的最低濃度為0.01ppm,符合最低法規標準,證明本研究之SERS活性基板為一具有前瞻性的微量抗生素檢測工具。
The detection of residual antibiotics is of great importance nowadays. Surface enhanced Raman scattering (SERS) provides a high chance in detecting trace molecules, so this technique gains more attention. The use of silver hollow nanosphere (HNS) arrays decorated with various dielectric nanoparticles (HfO2, TiO2, and Al2O3) using self-assembled monolayer polystyrene (PS) nanospheres as the sacrificial template is an attempt to demonstrate their potential as SERS-active substrates. Silver HNS and dielectric nanoparticles (NP) were deposited by E-beam evaporation. This fabrication method has the advantages of simplicity, large scale production, and easy size adjustment. Scanning electron microscopy (SEM) images show that the hybrid structures are hexagonally arranged, and Atomic force microscopy (AFM) shows that the surface morphology and the thickness of the deposited silver films are uniform. The dielectric NP modified silver HNS system exhibits superior Raman scattering enhancements than silver HNS alone due to the local surface plasmon resonance (LSPR) effect which originated from the silver HNSs and metal/semiconductor interface. The SERS enhancement with various dielectric materials was thoroughly compared and explained in experimental results. SERS application was verified using Rhodamine 6G (R6G) as a probe molecule, and the fabricated substrate was proven to be an effective SERS template for Raman signal detection. Al2O3 nanoparticles decorated on silver HNS exhibited the optimized enhancement factor (EF) value, which was found to be 6.2 x 107. Finally, the SERS-active substrate was used for Raman detection of Ampicillin, and the lowest concentration it can detect was 0.01 ppm, meeting the minimum legal standards, and showing that the SERS-active substrate is a promising tool for trace detection of antibiotics.
[1] Y. Luo and Q. Zhou, "Antibiotic resistance genes (ARGs) as emerging pollutants," Huanjing Kexue Xuebao / Acta Scientiae Circumstantiae, vol. 28, pp. 1499-1505, 2008.
[2] S.-C. Chang, M.-W. Chen, M.-C. Lin, and O. Y.-P. Hu, "Antibiotic Consumption in Human and Animals in Taiwan," Infection Control Journal, vol. 13, pp. 334-345, 2003.
[3] W. M. Linam and M. A. Gerber, "Changing Epidemiology and Prevention of Salmonella Infections," The Pediatric Infectious Disease Journal, vol. 26, pp. 747-748, 2007.
[4] A. H. Holmes, L. S. P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, et al., "Understanding the mechanisms and drivers of antimicrobial resistance," The Lancet, vol. 387, pp. 176-187.
[5] L. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, et al., "Raman Spectroscopy," Analytical Chemistry, vol. 70, pp. 341-362, 1998/06/01 1998.
[6] M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, "Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane," Analytical Chemistry, vol. 80, pp. 5118-5125, 2008/07/01 2008.
[7] M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, "Rationally designed nanostructures for surface-enhanced Raman spectroscopy," Chemical Society Reviews, vol. 37, pp. 885-897, 2008.
[8] A. P. Craig, A. S. Franca, and J. Irudayaraj, "Surface-Enhanced Raman Spectroscopy Applied to Food Safety," in Annual Review of Food Science and Technology, Vol 4. vol. 4, M. P. Doyle and T. R. Klaenhammer, Eds., ed, 2013, pp. 369-380.
[9] K. Y. Hong, C. D. L. de Albuquerque, R. J. Poppi, and A. G. Brolo, "Determination of aqueous antibiotic solutions using SERS nanogratings," Analytica Chimica Acta, vol. 982, pp. 148-155, 2017/08/22/ 2017.
[10] K. C. Schuster, E. Urlaub, and J. R. Gapes, "Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture," Journal of Microbiological Methods, vol. 42, pp. 29-38, 2000/09/01/ 2000.
[11] K. Katrin, K. Harald, I. Irving, R. D. Ramachandra, and S. F. Michael, "Surface-enhanced Raman scattering and biophysics," Journal of Physics: Condensed Matter, vol. 14, p. R597, 2002.
[12] M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, "Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions," Analyst, vol. 130, pp. 1543-1550, 2005.
[13] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974/05/15/ 1974.
[14] S. L. Kleinman, R. R. Frontiera, A.-I. Henry, J. A. Dieringer, and R. P. Van Duyne, "Creating, characterizing, and controlling chemistry with SERS hot spots," Physical Chemistry Chemical Physics, vol. 15, pp. 21-36, 2013.
[15] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, et al., "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Physical Review Letters, vol. 78, pp. 1667-1670, 03/03/ 1997.
[16] R. A. Tripp, R. A. Dluhy, and Y. Zhao, "Novel nanostructures for SERS biosensing," Nano Today, vol. 3, pp. 31-37, 2008/06/01/ 2008.
[17] K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, et al., "SERS: a versatile tool in chemical and biochemical diagnostics," Analytical and Bioanalytical Chemistry, vol. 390, pp. 113-124, January 01 2008.
[18] L. Baia, M. Baia, J. Popp, and S. Astilean, "Gold Films Deposited over Regular Arrays of Polystyrene Nanospheres as Highly Effective SERS Substrates from Visible to NIR," The Journal of Physical Chemistry B, vol. 110, pp. 23982-23986, 2006/11/01 2006.
[19] S.-C. Luo, K. Sivashanmugan, J.-D. Liao, C.-K. Yao, and H.-C. Peng, "Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review," Biosensors and Bioelectronics, vol. 61, pp. 232-240, 2014/11/15/ 2014.
[20] S. Pang, T. Yang, and L. He, "Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides," TrAC Trends in Analytical Chemistry, vol. 85, pp. 73-82, 2016/12/01/ 2016.
[21] S. Habouti, M. Mátéfi-Tempfli, C. H. Solterbeck, M. Es-Souni, S. Mátéfi-Tempfli, and M. Es-Souni, "On-substrate, self-standing Au-nanorod arrays showing morphology controlled properties," Nano Today, vol. 6, pp. 12-19, 2011.
[22] J. Yin, Y. Zang, C. Yue, Z. Wu, S. Wu, J. Li, et al., "Ag nanoparticle/ZnO hollow nanosphere arrays: large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement," Journal of Materials Chemistry, vol. 22, p. 7902, 2012.
[23] S. Wu, Z. W. Chen, T. Wang, and X. H. Ji, "A facile approach for the fabrication of Au/ZnO-hollow-sphere-monolayer thin films and their photocatalytic properties," Applied Surface Science, vol. 412, pp. 69-76, Aug 2017.
[24] X.-L. Li, T.-J. Lou, X.-M. Sun, and Y.-D. Li, "Highly Sensitive WO3 Hollow-Sphere Gas Sensors," Inorganic Chemistry, vol. 43, pp. 5442-5449, 2004/08/01 2004.
[25] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, et al., "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Letters, vol. 5, pp. 473-477, 2005/03/01 2005.
[26] I. White, H. Oveys, and X. Fan, "Increasing the enhancement of SERS with dielectric microsphere resonators," SPECTROSCOPY-SPRINGFIELD THEN EUGENE THEN DULUTH-, vol. 21, p. 36, 2006.
[27] A. Musumeci, D. Gosztola, T. Schiller, N. M. Dimitrijevic, V. Mujica, D. Martin, et al., "SERS of Semiconducting Nanoparticles (TiO2 Hybrid Composites)," Journal of the American Chemical Society, vol. 131, pp. 6040-6041, 2009/05/06 2009.
[28] G. Keresztury, "Raman Spectroscopy: Theory," in Handbook of Vibrational Spectroscopy, ed: John Wiley & Sons, Ltd, 2006.
[29] T. Waldmann, J. Klein, H. E. Hoster, and R. J. Behm, "Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature STM Study," ChemPhysChem, vol. 14, pp. 162-169, 2013.
[30] A. Nawrocka and J. Lamorska, "Determination of Food Quality by Using Spectroscopic Methods," in Advances in Agrophysical Research, S. Grundas and A. Stepniewski, Eds., ed Rijeka: InTech, 2013, p. Ch. 14.
[31] P. Atkins and J. De Paula, Elements of physical chemistry: Oxford University Press, USA, 2013.
[32] H. J. Bowley, D. L. Gerrard, J. D. Louden, and G. Turrell, Practical raman spectroscopy: Springer Science & Business Media, 2012.
[33] R. L. McCreery, "Magnitude of Raman Scattering," in Raman Spectroscopy for Chemical Analysis, ed: John Wiley & Sons, Inc., 2005, pp. 15-33.
[34] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, pp. 1-20, 1977/11/10/ 1977.
[35] M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," Journal of the American Chemical Society, vol. 99, pp. 5215-5217, 1977/06/01 1977.
[36] M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," The Journal of Chemical Physics, vol. 69, pp. 4159-4161, 1978.
[37] S. Hong and X. Li, "Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions," Journal of Nanomaterials, vol. 2013, p. 9, 2013.
[38] M. Moskovits, "Surface-enhanced spectroscopy," Reviews of modern physics, vol. 57, p. 783, 1985.
[39] P.-J. Huang, L.-K. Chau, T.-S. Yang, L.-L. Tay, and T.-T. Lin, "Nanoaggregate-Embedded Beads as Novel Raman Labels for Biodetection," Advanced Functional Materials, vol. 19, pp. 242-248, 2009.
[40] Q. Ye, J. Fang, and L. Sun, "Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group," The Journal of Physical Chemistry B, vol. 101, pp. 8221-8224, 1997/10/01 1997.
[41] A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, "On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering," Journal of the American Chemical Society, vol. 117, pp. 11807-11808, 1995/11/01 1995.
[42] Y.-C. Liu and R. L. McCreery, "Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces," Analytical Chemistry, vol. 69, pp. 2091-2097, 1997/06/01 1997.
[43] R. J. C. Brown and M. J. T. Milton, "Nanostructures and nanostructured substrates for surface—enhanced Raman scattering (SERS)," Journal of Raman Spectroscopy, vol. 39, pp. 1313-1326, 2008.
[44] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, "Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions," The Journal of Chemical Physics, vol. 84, pp. 4174-4180, 1986.
[45] A. Otto, "Surface-enhanced Raman scattering: “Classical” and “Chemical” origins," in Light Scattering in Solids IV: Electronics Scattering, Spin Effects, SERS, and Morphic Effects, M. Cardona and G. Güntherodt, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 289-418.
[46] H. Xu and M. Käll, "Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory," in Surface-Enhanced Raman Scattering: Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 87-103.
[47] L. Zeiri, B. V. Bronk, Y. Shabtai, J. Czégé, and S. Efrima, "Silver metal induced surface enhanced Raman of bacteria," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 208, pp. 357-362, 2002/08/14/ 2002.
[48] N. P. W. Pieczonka, P. J. G. Goulet, and R. F. Aroca, "Applications of the Enhancement of Resonance Raman Scattering and Fluorescence by Strongly Coupled Metallic Nanostructures," in Surface-Enhanced Raman Scattering: Physics and Applications, K. Kneipp, M. Moskovits, and H. Kneipp, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 197-216.
[49] X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, "Energy transfer in plasmonic photocatalytic composites," Light: Science &Amp; Applications, vol. 5, p. e16017, 02/12/online 2016.
[50] G. Shan, L. Xu, G. Wang, and Y. Liu, "Enhanced Raman Scattering of ZnO Quantum Dots on Silver Colloids," The Journal of Physical Chemistry C, vol. 111, pp. 3290-3293, 2007/03/01 2007.
[51] A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, "Plasmon-Induced Hot Carriers in Metallic Nanoparticles," ACS Nano, vol. 8, pp. 7630-7638, 2014/08/26 2014.
[52] S. Linic, P. Christopher, and D. B. Ingram, "Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy," Nature Materials, vol. 10, p. 911, 11/23/online 2011.
[53] N. Dasgupta and A. Dasgupta, Semiconductor devices: modelling and technology: PHI Learning Pvt. Ltd., 2004.
[54] J. Bardeen, "Surface States and Rectification at a Metal Semi-Conductor Contact," Physical Review, vol. 71, pp. 717-727, 05/15/ 1947.
[55] S. Kar, "MOSFET: Basics, Characteristics, and Characterization," in High Permittivity Gate Dielectric Materials, S. Kar, Ed., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 47-152.
[56] S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, et al., "Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor," Journal of the American Chemical Society, vol. 134, pp. 15033-15041, 2012/09/12 2012.
[57] M. Pisarek, A. Roguska, A. Kudelski, M. Andrzejczuk, M. Janik-Czachor, and K. J. Kurzydłowski, "The role of Ag particles deposited on TiO2 or Al2O3 self-organized nanoporous layers in their behavior as SERS-active and biomedical substrates," Materials Chemistry and Physics, vol. 139, pp. 55-65, 2013/04/15/ 2013.
[58] G. Zhao, H. Kozuka, and T. Yoko, "Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles," Thin Solid Films, vol. 277, pp. 147-154, 1996/05/01/ 1996.
[59] Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, et al., "Multicolour photochromism of TiO2 films loaded with silver nanoparticles," Nature Materials, vol. 2, p. 29, 12/15/online 2002.
[60] C. Clavero, "Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices," Nature Photonics, vol. 8, p. 95, 01/30/online 2014.
[61] Y. Sun and Y. Xia, "Increased Sensitivity of Surface Plasmon Resonance of Gold Nanoshells Compared to That of Gold Solid Colloids in Response to Environmental Changes," Analytical Chemistry, vol. 74, pp. 5297-5305, 2002/10/01 2002.
[62] N. Clament Sagaya Selvam, J. J. Vijaya, and L. J. Kennedy, "Effects of Morphology and Zr Doping on Structural, Optical, and Photocatalytic Properties of ZnO Nanostructures," Industrial & Engineering Chemistry Research, vol. 51, pp. 16333-16345, 2012/12/19 2012.
[63] L. M. Durso and K. L. Cook, "Impacts of antibiotic use in agriculture: what are the benefits and risks?," Current Opinion in Microbiology, vol. 19, pp. 37-44, 6// 2014.
[64] C. Andreou, R. Mirsafavi, M. Moskovits, and C. D. Meinhart, "Detection of low concentrations of ampicillin in milk," Analyst, vol. 140, pp. 5003-5, Aug 07 2015.
[65] R. Bogaerts and F. Wolf, "A STANDARDIZED METHOD FOR THE DETECTION OF RESIDUES OF ANTI-BACTERIAL SUBSTANCES IN FRESH MEAT," Fleischwirtschaft, vol. 60, pp. 667-&, 1980.
[66] R. W. JOHNSTON, R. H. REAMER, E. W. HARRIS, H. G. FUGATE, and B. SCHWAB, "A New Screening Method for the Detection of Antibiotic Residues in Meat and Poultry Tissues," Journal of Food Protection, vol. 44, pp. 828-831, 1981.
[67] A.-L. Myllyniemi, "Development of microbiological methods for the detection and identification of antimicrobial residues in meat," 2004.
[68] E. Raviña, The evolution of drug discovery: from traditional medicines to modern drugs: John Wiley & Sons, 2011.
[69] J. Dolovich, J. Ruhno, D. N. Sauder, S. Ahlstedt, and F. E. Hargreave, "Isolated late cutaneous skin test response to ampicillin: A distinct entity," Journal of Allergy and Clinical Immunology, vol. 82, pp. 676-679, 1988/10/01/ 1988.
[70] Z. Argov, T. Brenner, and O. Abramsky, "Ampicillin may aggravate clinical and experimental myasthenia gravis," Archives of Neurology, vol. 43, pp. 255-256, 1986.
[71] C. Andreou, R. Mirsafavi, M. Moskovits, and C. D. Meinhart, "Detection of low concentrations of ampicillin in milk," Analyst, vol. 140, pp. 5003-5005, 2015.
[72] S. A. Chen and S. T. Lee, "Kinetics and mechanism of emulsifier-free emulsion polymerization: styrene/hydrophilic comonomer (acrylamide) system," Macromolecules, vol. 24, pp. 3340-3351, 1991/05/01 1991.
[73] M. Arai, K. Arai, and S. Saito, "Polymer particle formation in soapless emulsion polymerization," Journal of Polymer Science: Polymer Chemistry Edition, vol. 17, pp. 3655-3665, 1979.
[74] C.-F. Liew, "Self-Assembly of Colloids Particle at a Water-Air Interface," Master, Chemical Engineering, National Tsing Hua University, 2005.
[75] Z. Zihua, Z. Tao, and L. Zhongfan, "Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling," Nanotechnology, vol. 15, p. 357, 2004.
[76] S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R. R. Bhatia, P. K. Mishra, et al., "Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO2) thin films," Applied Surface Science, vol. 264, pp. 737-742, 2013/01/01/ 2013.
[77] X. Li, Y. Zhang, Z. X. Shen, and H. J. Fan, "Highly Ordered Arrays of Particle-in-Bowl Plasmonic Nanostructures for Surface-Enhanced Raman Scattering," Small, vol. 8, pp. 2548-2554, 2012.
[78] A. Camposeo, D. Spadaro, D. Magrì, M. Moffa, P. G. Gucciardi, L. Persano, et al., "Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods," Analytical and Bioanalytical Chemistry, vol. 408, pp. 1357-1364, February 01 2016.
[79] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study," The Journal of Physical Chemistry C, vol. 111, pp. 13794-13803, 2007/09/01 2007.
[80] C.-H. Sya, "High Performance Surface Enhanced Raman Scattering Substrate for Trace Detection of Pesticides Residue," Material Science and Engineering, National Cheng Kung University, 2016.
[81] K. Sivashanmugan, J.-D. Liao, B. H. Liu, and C.-K. Yao, "Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution," Analytica Chimica Acta, vol. 800, pp. 56-64, 2013/10/24/ 2013.