簡易檢索 / 詳目顯示

研究生: 張祐誠
Chang, Yu-Cheng
論文名稱: 二階段結構損傷偵測分析法之研究
A Study on Two-step Methods for Structural Damage Detection
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 結構損傷偵測系統識別
外文關鍵詞: System identification, Structural damage detection
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對在振動反應量測模態數不完整與雜訊影響的情況下,利用系統識別理論配合二階段損傷偵測法進行結構損傷偵測分析。在第一階段進行損傷位置的標定時,吾人對模態殘餘力法與柔度法進行修改,以便能更有效地標定出可能的損傷位置,進而減少待識別參數數目。於第二階段再利用模態殘餘力法與全域最佳化的方法針對可能之損傷元素進行損傷程度的評估。經由數值模擬,探討不同方法應用於鏈模型之損傷偵測分析,結果顯示本文所提出的方法於不完整模態與含雜訊的情況下仍具有良好的精確性與強健性。最後則將整套方法應用於較複雜的桁架結構損傷偵測分析,以驗證其適用性。結果顯示本文所提出的方法對於較複雜結構仍可有效求出損傷位置及程度。

    In this thesis, structural damage detection analysis is studied with consideration of incomplete modal data under noisy conditions. In the process of damage detection, a two-step method in combination with system identification technique is employed. In the first step, we proposed a modification to the residual force method and the flexibility method, respectively, so that possibly damaged elements can be located more reliably. In the second step, the damage extent of possibly damaged elements is then evaluated using the residual force method and a global optimization method, respectively. Using numerical simulation, results of structural damage detection of a chain model obtained from different detection techniques are compared and discussed. Results show that the proposed method is accurate and robust using incomplete modal data under noisy conditions. Finally, applicability and effectiveness of the proposed method is demonstrated by damage detection of a truss structure.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅴ 圖目錄…………………………………………………………………Ⅵ 第一章 緒論……………………………………………………………1 1-1 引言……………………………………………………………1 1-2 文獻回顧………………………………………………………3 1-3 研究目的與方法………………………………………………9 1-4 論文架構 ……………………………………………………11 第二章 基於系統識別的損傷偵測分析………………………………12 2-1 引言……………………………………………………………12 2-2 系統識別與損傷偵測…………………………………………13 2-3 模態資料不完整的問題………………………………………16 第三章 二階段損傷偵測法……………………………………………20 3-1 引言………………………………………………………………20 3-2 第一階段-損傷位置的標定……………………………………22 3-3 第二階段-損傷程度的評估……………………………………29 第四章 數值模擬分析…………………………………………………37 4-1 引言……………………………………………………………37 4-2 鏈模型之損傷偵測分析………………………………………38 4-3 桁架結構(truss)之損傷偵測分析…………………………45 第五章 結論……………………………………………………………48 參考文獻.….……………………………………………………………51 附錄A:最小秩數擾動法(Minimum Rank Perturbation Theory)……78 附錄B:模態可信度(Modal Assurance Criterion, MAC)……………82

    [1]Allemang, R. J. and Brown, D. L., “A Correlation Coefficient for Modal Vector Analysis”, Proc. 1st Int. Modal Analysis Conf., pp. 110-116, 1983.
    [2]Aygen, Z. E., Seker, S., Bagnyanik, M., Bagnyanik, F. G. and Ayaz, E. ,“Fault Section Estimation in Electrical Power Systems Using Artificial Neural Network Approach”, Transmission and Distribution Conference of IEEE, Vol. 2, pp. 466 - 469, 1999.
    [3]Baruch, M. and Bar Itzhack, I. Y., “Optimum Weighted Orthogonalization of Measured Modes”, AIAA Journal, Vol. 16, No. 4, pp. 346–351, 1978.
    [4]Baruch, M., “Optimum Procedure to Correct Stiffness and Flexibility Matrices Using Vibration Tests”, AIAA Journal, Vol. 16, No. 11, pp.1208–1210, 1978.
    [5]Baruh, H. and Ratin, S., ”Damage Detection in Flexible Structures”, Joural of Sound and Vibration, 166(1), pp. 21-30, 1993.
    [6]Berman, A.,“System Identification of Structural Dynamic Models - Theoretical and Practical Bounds”, AIAA paper 84-0929, 1984.
    [7]Berman, A., “Multiple Acceptable Solutions in Structural Model Improvement”, AIAA Journal, Vol. 33(5), pp. 924-927, 1995.
    [8]Berman, A. and Flannely, W. G.,“Theory of Incomplete Models of Dynamic Structures”, AIAA Joural, Vol.9 (8), August 1971.
    [9]Berman, A. and Nagy, E. J., “Improvement of Large Analytical Model Using Test Data”, AIAA Journal, Vol. 21, No. 8, pp. 1168–1173, 1983.
    [10]Bonisoli, E., Fasana, A., Garibaldi, L. and Marchesiello, S., “Sensitivity Analysis and Damage Location Over the Z24 Bridge”, Proceedings of the 1st European Workshop in Structural Health Monitoring, Paris, pp. 1007-1015, 2002
    [11]Chang, S. P., Lee, J. and Kim, S., “Damage Detection in a Steel Bridge Using Artificial Neural Network and Signal Anomaly Index”, Proceedings of the 1st European Workshop in Structural Health Monitoring, Paris, pp. 718-725, 2002
    [12]Chiang, Dar-Yun and Huang, Si-Tsong, “Modal Parameter Identification Using Simulated Evolution”, AIAA Journal, Vol. 35, No. 7, pp. 1204-1208, 1997.
    [13]Chiang, Dar-Yun and Lai, Wen-Yi, “Structural Damage Detection Using the Simulated Evolution Method”, AIAA Journal, Vol. 37, No. 10, pp. 1331-1333, 1999.
    [14]Chiang, D. Y., “System Identification”, class notes.
    [15]Collins, T. D., Hart, G. C., Hasselman, T. K. and Kennedy, B., “Statistical Identification of Structures”, AIAA Journal, Vol. 12(2), pp. 185-190, 1974.
    [16]Doebling, C.R. and Prime, M. B., “A Summary Review of Vibration-based Damage Identification Methods”, The Shock and Vibration Digest, 30(2), pp. 91-105, 1998.
    [17]Doeling, S. W., “Minimum-Rank Optimal Update of Elemental Stiffness Parameters for Structural Damage Identification”, AIAA Journal, Vol 34, No. 12, pp. 2615-2621, 1996.
    [18]Fanni, A., Giua, A. and Sandoli, E. “Neural Networks for Multiple Fault Diagnosis in Analog Circuits”, The IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pp. 303 – 310, 1993.
    [19]Fissette, E. and Ibrahim, S., “Error Location and Updating of Analytical Dynamic Models Using a Force Balance Method”, Proc. 6th Int. Modal Analysis Conf., pp. 1063-1070, 1988.
    [20]Fogel, D. B., “System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling”, Gin Press, 1991.
    [21]Hajela, P., and Soeiro, F.J., “Structural Damage Detection Based on Static and Modal Analysis”, AIAA Journal, Vol. 28(6), pp. 1110-1115, 1989.
    [22]Jaishi B, Ren W-X, “Damage Detection by Finite Element Model Updating Using Modal Flexibility Residual”, Journal of Sound and Vibration, 290 (1-2), pp. 369-387, Feb. 21, 2006.
    [23]Kabe, A. M., “Stiffness Matrix Adjustment Using Mode Data”, AIAA Journal, Vol. 23, No. 9, pp. 1431–1436, 1985.
    [24]Kim, Y. Y., Lee, H. C., Lee, Y. W., “Damage Detection in A Beam via The Wavelet Transform of Mode Shapes”, The Korean Society of Mechanical Engineers, Vol. 24(4), pp. 916–925, 2000.
    [25]Kudva, J. N., Munir, N. and Tan, P. W., “Damage Detection in Smart Structure Using Neural Network and Finite Element Analysis”, Smart Materials and Structures (UK)., Vol. 1, no. 2, pp. 108-112, June. 1992.
    [26]Lam, H. F., Yuen, K. V., Beck, J. L. “ Structural Health Monitoring via Measured Ritz Vectors Utilizing Artificial Neural Networks”, Computer-Aided Civil and Infrastructure Engineering, 21(4), pp. 232-241, May 2006.
    [27]Li, Z., Xia, S., Wang, J., Su, X. “Damage Detection of Cracked Beams Based on Wavelet Transform”, International Journal of Impact Engineering, 32(7), pp. 1190-1200, Jul. 2006.
    [28]Liu, Ji-Ke and Yang, Qiu-Wei, “A Two-step for Structural Damage Identification Based on Residual Force Vector”, Acta Scientiarum Naturalium Universitatis Sunyatseni, Vol.43, No.4, pp.1-4, Jul. 2004.
    [29]Lopes, V. J., Park, G., Cudney, H. H., Inman, D. J., “Impedance-Based Structural Health Monitoring With Artificial Neural Networks”, Journal of Intelligent Material Systems and Structures, Vol. 11, no. 3, pp. 206-214, Mar. 2000.
    [30]Maia, N. M. M.“An Introduction to the Singular Value Decomposition Technique”, Proc. 8th Int. Modal Analysis Conf., pp. 335-339,1989.
    [31]Meirovitch, L.,“Computational Methods in Structural Dynamics”, Sijthoff & Noordhoff International Publishers B. V., Alphen ann den Rijn, The Netherlands, 1980.
    [32]Oehlmann, H., “A Method For Analysis Gearbox Faults Using Time-Frequency Representatiork”, Mechanical Systems and Signal Processing, Vol. 11(4), pp. 530-545,1997
    [33]Pandey, A. K., and Biswas, M., “Damage Detection in Structures Using Changes in Flexibility”, Journal of Sound Vibration, Vol. 169, No.1, pp. 3-17, 1994.
    [34]Pandey, A. K., and Biswas, M., “Damage Diagnosis of Truss Structures by estimation of Flexibility Change”, Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis (1066-1763), Vol. 10, No. 2, pp. 104-117, Apr. 1995.
    [35]Parloo E., Guillaume P, Van Overmeire M, “Damage Assessment using Mode Shape Sensitivities”, Mechanical Systems and Signal Processing, 17 (3), pp. 499-518, May 2003.
    [36]Quek, S. T., Wang, Q., Ong, K. H. and Zhang, L. “Practical Issues in the Detection of Damage in Beams Using Wavelets”, Smart Materials and Structures, 10, pp. 1009-1017, 2001.
    [37]Ricles, J. M., and Kosmatka, J. B., “Damage Detection in Elastic Structures Using Vibratory Residual Forces and Weighted Sensitivity”, AIAA Journal, Vol. 30(9), 1992.
    [38]Sung, D. U., Kim, C. G. and Hong, C. S. “Monitoring Of Impact Damages In Composite Laminates Using Wavelet Transform”, Composites Part B: Engineering (UK), Vol. 33B, No. 1, pp. 35-43, 2002.
    [39]Surace, C. and Ruotolo, R., “Crack Detection of a Beam Using the Wavelet Transform”, International Modal Analysis Conference (IMAC) 12th, Honolulu, HI; UNITED STATES; 31 Jan.-3 Feb., pp. 1141-1147, 1994.
    [40]Trochidis, A., Douka, E. and Loutridis, S., “Crack Identification in Plates Using Wavelet Analysis”, Journal of Sound and Vibration, Vol. 270, No. 1-2, pp. 279-295, 6 Feb. 2004.
    [41]Worden, K., Ball, A. D. and Tomlinson, G. R., “Fault Location in Framework Structure Using Neural Networks”, Smart Materials and Structures, Vol.2, pp. 189-200, 1993.
    [42]Wu J. R., Li Q. S. “Structural Parameter Identification and Damage Detection for A Steel Structure using A Two-Stage Finite Element Model Updating Method”, Journal of Constructional Steel Research, 62(3), pp. 231-239, Mar. 2006.
    [43]Wu, X., Ghaboussi, J. and Garrett, J. H. “Use of Neural Network In Detection Of Structural Damage”, Computer & Structures, Vol. 42, No. 4, pp. 649-659, 1992.
    [44]Yang, J. N., Lin, S. L. “Identification of Parametric Variations of Structures Based on Least Squares Estimation and Adaptive Tracking Technique”, Journal of Engineering Mechanics-Asce, 131(3), pp. 290-298, Mar. 2005.
    [45]Young, J. K. and On, F. J.“Mathematical Modeling via Direct Use of Vibration Data”, National Aeronautic and Space Engineering and Automotive Engineers, Los Angeles, California, Reprint No 690615, October 1969
    [46]Zimmerman, D.C. and Kaouk, M.,“Structural Damage Detection Using a Minimum Rank Update Theory”, Journal of Sound and Vibration and Acoustics, Vol. 116, pp. 222-231, 1994.
    [47]Zimmerman, D. C.,“Statistical confidence using minimum rank perturbation theory”, Mechanical Systems and Signal Processing, 20(5), pp. 1155-1172, Jul. 2006.
    [48]江達雲, 賴文一, “二階段損傷偵法分析法”, 中國航空太空學會, 第三十卷第一期, 第19-26頁, 民國八十七年.
    [49]林子超,類神經網路在結構損傷偵測分析的應用,碩士論文, 國立成功大學航空太空工程學研究所, 1997.
    [50]胡立聖, 利用模式縮減之結構損傷偵測分析法,碩士論文, 國立成功大學航空太空工程學研究所, 1997.
    [51]陳冠宏, 模型縮減與損傷偵測分析之研究,碩士論文, 國立成功大學航空太空工程學研究所, 2000.
    [52]陳豐昇, 結構損傷部位識別法之研究,碩士論文, 國立成功大學航空太空工程學研究所, 2001.

    下載圖示 校內:立即公開
    校外:2006-08-09公開
    QR CODE