簡易檢索 / 詳目顯示

研究生: 王秋閔
Wang, Chiu-ming
論文名稱: 營建剩餘土應用於無機聚合膠結材
Construction waste soil utilized as a raw material of inorganic polymers
指導教授: 黃忠信
Huang, Jong-shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 營建剩餘土鋁矽酸鹽礦物無機聚合
外文關鍵詞: aluminum-silicate, construction waste soil, inorganic polymer
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年營建剩餘土問題日趨嚴重,對生態環境造成相當大的衝擊。台灣地區之營建剩餘土含有大量鋁矽酸鹽礦物,本研究利用此化學特性,探討營建剩餘土應用於無機聚合物之可行性,以取代耗能較大的波特蘭水泥,除使營建剩餘土達到資源化之目的外,亦能降低無機聚合膠結材之原料成本。

    本研究首先分析營建剩餘土之化學成分,並以煅燒方式提高營建剩餘土之活性,再藉由改變鹼激發劑配比、水膠比等控制因素,以探討其對膠結材抗壓強度之影響。研究結果顯示,營建剩餘土煅燒至850℃持溫6小時具有較佳活性,粉土所製成之無機聚合膠結材齡期91天之最佳抗壓強度為930 kgf/cm2,黏土、淤泥及皂土所製成膠結材齡期91天之抗壓強度則為750~800kgf/cm2。若將此類營建剩餘土所製成膠結材應用於砂漿,粉土砂漿齡期91天抗壓強度為820kgf/cm2,高於水泥砂漿齡期91天之抗壓強度726kgf/cm2,所以,煅燒後營建剩餘土為良好無機聚合之原料。

    In recent years, the problem of construction waste soil becomes more and more serious, causing a considerable impact on ecological environment. Construction waste soil in Taiwan is composed of lots of aluminum-silicates, which are the primary minerals for raw materials of inorganic polymers. In the study, the feasibility of using construction waste soil as a raw material of inorganic polymers is investigated and the replacement of high-energy-consumption Portland cement by inorganic polymers is also discussed. Hopefully, construction waste soil can be reused and the cost of inorganic polymers is thus reduced.

    At first, the chemical constituents of construction waste soil are characterized. Then, the construction waste soil is calcined at different temperatures to enhance its chemical reactivity. Next, mix proportion and water-binder ratio are taken into account in determining the maximum compressive strength of inorganic polymers. Experimental results indicate that the optimum calcination temperature of construction waste soil is 850℃ for lasting six hours. When calcined silt is used as a raw material of inorganic polymers, its maximum 91-day compressive strength is 930 kgf/cm2. When calcined clay, sludge and bentonite are used as raw materials of inorganic polymers, their maximum 91-day compressive strengths are 750~800kgf/cm2. Calcined construction waste soil can be used as a binder in the production of mortars. The maximum 91-day compressive strength of construction waste soil mortars, 820 kgf/cm2, is higher than that of cement mortars, 726 kgf/cm2. Therefore, the calcined construction waste soil can be used as a raw material of inorganic polymers and employed as a binder in mortars.

    摘要 I Abstract II 誌謝 IV 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1研究動機與目的 1 1.2本文組織與內容 3 第二章 相關理論與文獻回顧 5 2.1營建剩餘土石方 5 2.1.1營建剩餘土石方分類 5 2.1.2營建剩餘土石方處理 7 2.1.3營建剩餘土石方再生利用 8 2.2膠結材發展 8 2.3無機聚合膠結材之組成 11 2.3.1矽鋁酸鹽礦物 11 2.3.1.1片矽酸鹽礦物 11 2.3.1.2爐石粉 13 2.3.2鹼性溶液 14 2.3.3鹼金屬矽酸鹽類 15 2.4無機聚合膠結材之反應機制與結構 16 2.4.1無機聚合膠結材之反應機制 16 2.4.2無機聚合膠結材之結構 17 第三章 試驗方法與步驟 25 3.1試驗規畫 25 3.2試驗材料及儀器設備 26 3.2.1試驗材料 26 3.2.2儀器設備 27 3.3試驗流程及方法 31 3.3.1營建廢棄土之煅燒與粉碎 31 3.3.2營建剩餘土性質分析 32 3.3.2.1 熱重分析(TGA) 32 3.3.2.2 傅立葉紅外線光譜分析(FTIR) 32 3.3.2.3 X射線螢光分析(XRF) 33 3.3.2.4 X射線繞射分析(XRD) 33 3.3.3試體配比設計 33 3.3.4試體之製作 35 3.3.5試驗變因規畫 36 3.3.5.1營建剩餘土煅燒溫度之決定 36 3.3.5.2鹼激發劑之最佳配比 37 3.3.5.3 ICP試驗 37 3.3.5.4水膠比 37 3.3.5.5砂漿拌合 38 3.3.6流度試驗 38 3.3.7抗壓強度試驗 39 3.3.8 透水試驗 39 第四章 試驗結果與討論 51 4.1營建剩餘土之性質分析 51 4.1.1 X射線螢光分析(XRF) 51 4.1.2 X射線繞射分析(XRD) 52 4.1.3 熱重分析(TGA) 54 4.1.4 傅立葉紅外線光譜分析(FTIR) 55 4.1.5 比重分析 56 4.2營建剩餘土最佳煅燒溫度 56 4.3鹼激發劑最佳配比 57 4.4 ICP試驗 59 4.5水膠比之影響 60 4.6拌合砂漿 61 4.7透水試驗 62 第五章 結論與建議 85 參考文獻 88

    [1] 曹定人,「台灣地區工程廢棄土管理問題之探討」,國立中興大學,1993。

    [2] 施國欽,「大地工程學(一)土壤力學篇」,文笙書局,1996。

    [3] 杜明星,「營建剩餘土資場申請設置審查、應有設施申報查核、營運管理及土石方再利用之研究」,國立中央大學土木研究所,碩士論文,2007。

    [4] 代新祥,「鹼激活土聚水泥的製備、結構與性能」,華南理中大學,博士論文,2005。

    [5] 梁繼文,「礦物學」,五南圖書出版,1984。

    [6] Davidovits, J., “Chemistry of geopolymeric systems terminology,” proceeding of Geopolymer 99 Second International Conference, Editors: Davidovits, J., R. and James, C., France,pp. 9-37,1999.

    [7] 邱俊萍,「利用高爐爐渣製成無機聚合材料之研究」,台北科技大學材料及資源工程系,碩士論文,2002。

    [8] Phair, J. W. and Van Deventer, J. S. J., “Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer,” Minerals Engineering, Vol. 14, No 3, pp.289-304, 2001.
    [9] 陳松,李玉香,「模擬含鹼高放廢液“鹼-篇高嶺土-礦渣”固化性能研究」,鋁酸鹽通報,第25卷第3期,第42-47頁,2006。

    [10] Yip, C. K., G. C. and van Deventer, J. S. J., “The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation, ”Cement and Concrete Research, Vol. 35, pp.1688-1697, 2005.

    [11] Van Jaarsveld, J. G. S. and Van Denventer, J. S. J., “Effect of the alkali metal activator on the properties of fly ash-based geopolymers,” International Engineering Chemical Research, Vol. 38, pp. 3932-3941, 1999c.

    [12] Davidovits, J., “Early high-strength mineral polymer,” United States Patent 4,509,985, 1985.

    [13] Davidovits, J., “Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials,” United States patent 5,349,118, 1994.

    [14] Xu, H. and Van Deventer, J. S. J., “the geopolymerisation of alumino-silicate minerals,” International Journal Minerals Process, Vol. 59, pp. 247-266, 2000.

    [15] Xu, H. and Van Deventer, J. S. J and Lukey, G. C., “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” International Engineering Chemical Research, Vol. 40, pp. 3749-3756, 2001.

    [16] Davidovits, J., “Geopolymers : Inorganic Polymeric New Materials,” Journal of Thermal Analysis, Vol. 37, 1633-1656, 1991.

    [17] Klein, C. and Hurlbut Jr, C. S., “Manual of Mineralogy 21st ed,” John Wiley & Sons, Inc., 2000.

    [18] 戴詩潔,「高嶺土鋁矽酸鹽聚合材料之研究」,碩士論文,台北科技大學材料及資源工程系,2005。

    [19] 汪建民,「陶瓷技術手冊(下)」,經濟部技術處,1994。

    [20] 張瑜文,「水庫淤泥應用於無機聚合膠結材」,碩士論文,國立成功大學土木工程研究所,2008。

    下載圖示 校內:2012-07-09公開
    校外:2014-07-09公開
    QR CODE