簡易檢索 / 詳目顯示

研究生: 林佩玉
Lin, Pei-Yu
論文名稱: 單一基板整合氮化鋁鎵/氮化鎵高電子遷移率電晶體之直接耦合場效邏輯(DCFL)與互補邏輯(CMOS)電路的開發
Development of Monolithically Integrated AlGaN/GaN HEMTs-Based DCFL and CMOS Logic Circuits
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 144
中文關鍵詞: 氮化鋁鎵/氮化鎵高電子遷移率電晶體直接耦合場效應電晶體氮化鎵互補邏輯電路單一基板整合表面處理氧化層
外文關鍵詞: AlGaN/GaN HEMTs, Direct-Coupled FET Logic, GaN Complementary Logic Circuits, Monolithic Integration, Surface Treatment, Oxide Layer
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的核心在於充分利用氮化鋁鎵/氮化鎵高電子遷移率電晶體的優越特性,設計並實現單一基板整合的直接耦合場效應電晶體邏輯架構(DCFL)和氮化鎵互補邏輯電路(GaN CMOS)。此設計旨在解決傳統分立式元件設計中因封裝與布線所導致的寄生電感問題,進而顯著提升高頻操作下的性能與穩定性。
    在研究的第一部分,我們利用經過閘極蝕刻處理的耗盡型(D-mode)與增強型(E-mode)AlGaN/GaN HEMTs,將其集成於單一晶片,實現高性能的DCFL反相器。為了改善元件界面特性,採用了TMAH溶液表面處理以及沉積氧化層後進行 500℃ 15分鐘的氮氣退火,成功減少界面陷阱,大幅提升元件性能。在5V供電電壓下,DCFL反相器實現了4.66V的輸出邏輯擺幅、2.01V的低邏輯噪聲容限、1.7V的高邏輯噪聲容限以及23.43 V/V的高電壓增益,展現出優異的抗干擾能力與穩定性。
    第二部分中,我們進一步針對p通道和n通道HEMTs進行精密的閘極蝕刻處理,成功實現增強型操作,構建了單一基板整合的GaN互補邏輯電路。其中,n通道與p通道的閾值電壓分別為0.5V和-0.5V。在2V供電電壓下,實驗結果顯示氮化鎵互補邏輯電路實現了1.949V的輸出邏輯擺幅、0.3789V的低邏輯噪聲容限、1.31V的高邏輯噪聲容限、0.26V的過渡窗口以及12.8 V/V的高電壓增益。
    本研究展現了AlGaN/GaN HEMTs在高頻與高效邏輯電路設計中的巨大潛力,成功開發出具優異性能的DCFL反相器與GaN CMOS邏輯電路,為高頻應用提供了全新的方向,並為下一代高效能電子系統的開發奠定了堅實基礎。

    This thesis focuses on leveraging the exceptional properties of AlGaN/GaN high-electron-mobility transistors (HEMTs) to design and implement direct-coupled FET logic (DCFL) and GaN complementary logic circuits (GaN CMOS) on a single substrate. The proposed design aims to address the parasitic inductance issues inherent in traditional discrete component designs due to packaging and interconnection, thereby significantly enhancing performance and stability under high-frequency operations.
    In the first part of the study, depletion-mode (D-mode) and enhancement-mode (E-mode) AlGaN/GaN HEMTs were integrated on a single chip to realize a high-performance DCFL inverter. To improve the device interface characteristics, TMAH surface treatment and post-deposition annealing of the oxide layer at 500°C for 15 minutes in a nitrogen environment were employed, effectively reducing interface traps and significantly enhancing device performance. Under a 5V supply voltage, the DCFL inverter achieved an output voltage swing of 4.66V, a low-level noise margin (NML) of 2.01V, a high-level noise margin (NMH) of 1.7V, and a voltage gain of 23.43 V/V, demonstrating excellent noise immunity and stability.
    In the second part, precise gate etching techniques were applied to p-channel and n-channel HEMTs to successfully achieve enhancement-mode operation, culminating in the development of GaN complementary logic circuits integrated on a single substrate. The threshold voltages (VTH) of the n-channel and p-channel devices were 0.5V and -0.5V, respectively. Experimental results under a 2V supply voltage revealed that the GaN CMOS logic circuit achieved an output voltage swing of 1.949V, an NML of 0.3789V, an NMH of 1.31V, a transition window of 0.26V, and a voltage gain of 12.8 V/V.
    This study highlights the immense potential of AlGaN/GaN HEMTs in high-frequency and high-efficiency logic circuit design, successfully developing high-performance DCFL inverters and GaN CMOS logic circuits. These advancements offer new directions for high-frequency applications and lay a solid foundation for developing next-generation high-performance electronic systems.

    中文摘要 III Development of Monolithically Integrated AlGaN/GaN HEMTs-Based DCFL and CMOS Logic Circuits V Abstract V 致謝 VII Table of Contents VIII List of Figures X List of Tables XV CHAPTER 1 Introduction 1 1.1 Background 1 1.2 Motivation 5 1.3 Organization 9 CHAPTER 2 Basic Theory 12 2.1 GaN HEMTs Polarization Effect 12 2.1.1 Spontaneous polarization 13 2.1.2 Piezoelectric polarization 16 2.1.3 Interface polarizations and 2DEG and 2DHG 17 2.2 Contact of Metal and Semiconductor 19 2.2.1 N-type Metal-Semiconductor contact: 19 2.2.2 P-type Metal-Semiconductor contact: 20 2.3 Transmission Line Model Measurement 21 2.4 Annealing 25 2.4.1 N-type ohmic contact annealing: 25 2.4.2 P-type ohmic contact annealing: 26 2.5 Analysis of Logic Circuits 30 2.5.1 GaN-based DCFL Circuits 30 2.5.2 GaN-based Complementary Logic Circuits 34 CHAPTER 3 Experiments 39 3.1 Description of Masks Used for Lithography 39 3.2 Device Fabrication 40 3.2.1 Direct-Coupled Field Logic (DCFL) circuit 40 3.2.2 GaN Complementary Logic Circuits 54 CHAPTER 4 Results and Discussion 70 4.1 DCFL Circuits Analysis 70 4.1.1 Transmission Electron Microscopy 70 4.1.2 Energy-Dispersive X-ray Spectroscopy 71 4.1.3 TLM Analysis 73 4.1.4 Output and Transfer Characteristics of the device 75 4.2 GaN-Based Complementary Logic Circuits Analysis 88 4.2.1 Enhancement-mode N-FET 88 4.2.2 P-FET 96 4.2.3 Output and Transfer Characteristics of the device 103 CHAPTER 5 Conclusion 122 CHAPTER 6 Future Work 124 References 125

    [1] K. Yuk, G. R. Branner, and C. Cui, "Future directions for GaN in 5G and satellite communications," in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), 6-9 Aug. 2017 2017, pp. 803-806, doi: 10.1109/MWSCAS.2017.8053045.
    [2] A. A. Hadi, X. Fu, E. Hossain, and R. Challoo, "Hardware Evaluation for GaN-Based Single-Phase Five-Level Inverter," IEEE Access, vol. 11, pp. 64248-64259, 2023, doi: 10.1109/ACCESS.2023.3288482.
    [3] J. S. Sakthi Suriya Raj, P. Sivaraman, P. Prem, and A. Matheswaran, "Wide Band Gap semiconductor material for electric vehicle charger," Materials Today: Proceedings, vol. 45, pp. 852-856, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2020.02.916.
    [4] H. Wang, F. Wang, and J. Zhang, "Power Semiconductor Device Figure of Merit for High-Power-Density Converter Design Applications," IEEE Transactions on Electron Devices, vol. 55, no. 1, pp. 466-470, 2008, doi: 10.1109/TED.2007.910573.
    [5] F. A. Marino, N. Faralli, D. K. Ferry, S. M. Goodnick, and M. Saraniti, "Figures of merit in high-frequency and high-power GaN HEMTs," Journal of Physics: Conference Series, vol. 193, no. 1, p. 012040, 2009/11/01 2009, doi: 10.1088/1742-6596/193/1/012040.
    [6] N. Islam, M. F. P. Mohamed, M. F. A. J. Khan, S. Falina, H. Kawarada, and M. Syamsul, "Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review," Crystals, vol. 12, no. 11, p. 1581, 2022. [Online]. Available: https://www.mdpi.com/2073-4352/12/11/1581.
    [7] J. Ballestín-Fuertes, J. Muñoz-Cruzado-Alba, J. F. Sanz-Osorio, and E. Laporta-Puyal, "Role of Wide Bandgap Materials in Power Electronics for Smart Grids Applications," Electronics, vol. 10, no. 6, p. 677, 2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/6/677.
    [8] F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, "An Overview of Normally-Off GaN-Based High Electron Mobility Transistors," Materials, vol. 12, no. 10, p. 1599, 2019. [Online]. Available: https://www.mdpi.com/1996-1944/12/10/1599.
    [9] E. A. Jones, F. F. Wang, and D. Costinett, "Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 707-719, 2016, doi: 10.1109/JESTPE.2016.2582685.
    [10] B. Wang, M. Riva, J. D. Bakos, and A. Monti, "Integrated Circuit Implementation for a GaN HFET Driver Circuit," IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 2056-2067, 2010, doi: 10.1109/TIA.2010.2057499.
    [11] Z. Zheng et al., "Enhancement-Mode GaN p-Channel MOSFETs for Power Integration," 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 525-528, 2020.
    [12] N. Chowdhury et al., "First Demonstration of a Self-Aligned GaN p-FET," in 2019 IEEE International Electron Devices Meeting (IEDM), 7-11 Dec. 2019 2019, pp. 4.6.1-4.6.4, doi: 10.1109/IEDM19573.2019.8993569.
    [13] A. Udabe, I. Baraia-Etxaburu, and D. G. Diez, "Gallium Nitride Power Devices: A State of the Art Review," IEEE Access, vol. 11, pp. 48628-48650, 2023, doi: 10.1109/ACCESS.2023.3277200.
    [14] E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 17, no. 4, pp. 1742-1749, 1999, doi: 10.1116/1.590818.
    [15] O. Ambacher et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, no. 1, pp. 334-344, 2000, doi: 10.1063/1.371866.
    [16] O. Ambacher et al., "Role of Spontaneous and Piezoelectric Polarization Induced Effects in Group-III Nitride Based Heterostructures and Devices," physica status solidi (b), vol. 216, no. 1, pp. 381-389, 1999, doi: https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<381::AID-PSSB381>3.0.CO;2-O.
    [17] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
    [18] K. Chen et al., "A novel E-mode GaN p-MOSFET featuring charge storage layer with high current density," Journal of Physics D: Applied Physics, vol. 55, no. 44, p. 444007, 2022/09/30 2022, doi: 10.1088/1361-6463/ac8eba.
    [19] G. Cosendey, "(In,Al)N-based blue microcavity lasers," 2013.
    [20] T. Abbas and L. H. Slewa, "Transmission line method (TLM) measurement of (metal/ZnS) contact resistance," 2015.
    [21] Z. R. Yan Wei, Du Yandong, Han Weihua and Yang Fuhua, "Analysis of the ohmic contacts of Ti/Al/Ni/Au to AlGaN/GaN HEMTs by the multi-step annealing process," Journal of Semiconductors, vol. 33, no. 6, p. 064005, 2012/06/01 2012, doi: 10.1088/1674-4926/33/6/064005.
    [22] X. J. Li et al., "The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN," Journal of Applied Physics, vol. 116, no. 16, 2014, doi: 10.1063/1.4900729.
    [23] [1] Y. Koide et al., "Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN," Journal of Electronic Materials, vol. 28, pp. 341-346, 1998.
    [24] L. F. Jia et al., "E/D-Mode GaN Inverter on a 150-mm Si Wafer Based on p-GaN Gate E-Mode HEMT Technology," Micromachines (Basel), vol. 12, no. 6, May 27 2021, doi: 10.3390/mi12060617.
    [25] D. Chettri, G. Mainali, N. Xiao, X. Tang, and X. Li, "Monolithic n‐Type Metal–Oxide–Semiconductor Inverter Integrated Circuits Based on Wide and Ultrawide Bandgap Semiconductors," physica status solidi (b), vol. 261, no. 7, 2024, doi: 10.1002/pssb.202300493.
    [26] Zhu, M. and E. Matioli, Monolithic integration of GaN-based NMOS digital logic gate circuits with E-mode power GaN MOSHEMTs. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018: p. 236-239.
    [27] M. Zhu and E. Matioli, "Monolithic integration of GaN-based NMOS digital logic gate circuits with E-mode power GaN MOSHEMTs," 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 236-239, 2018.
    [28] S. K. A., et al., "CMOS LOGIC FAMILIES FOR VLSI DESIGN," 10th International Conference On Aerospace Sciences &amp; Aviation Technology, 2003.
    [29] J. R. Hauser, "Noise margin criteria for digital logic circuits," IEEE Transactions on Education, vol. 36, pp. 363-368, 1993.
    [30] N. A. T. Xinghao Chen, "Fundamentals of CMOS design," Electronic Design Automation, 2009.
    [31] Y. Cai, Z. Cheng, W. C. W. Tang, K. M. Lau, and K. J. Chen, "Monolithically Integrated Enhancement/Depletion-Mode AlGaN/GaN HEMT Inverters and Ring Oscillators Using$hboxCF_4$Plasma Treatment," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2223-2230, 2006, doi: 10.1109/ted.2005.881002.
    [32] Y. Kong et al., "Monolithic Integration of E/D-Mode AlGaN/GaN MIS-HEMTs," IEEE Electron Device Letters, vol. 35, no. 3, pp. 336-338, 2014, doi: 10.1109/led.2013.2297433.
    [33] G. Tang et al., "Digital Integrated Circuits on an E-Mode GaN Power HEMT Platform," IEEE Electron Device Letters, vol. 38, no. 9, pp. 1282-1285, 2017, doi: 10.1109/LED.2017.2725908.
    [34] N. Chowdhury, J. Jung, Q. Xie, M. Yuan, K. Cheng, and T. Palacios, "Performance Estimation of GaN CMOS Technology," in 2021 Device Research Conference (DRC), 20-23 June 2021 2021, pp. 1-2, doi: 10.1109/DRC52342.2021.9467201.
    [35] R. Chu, Y. Cao, M. Chen, R. Li, and D. Zehnder, "An Experimental Demonstration of GaN CMOS Technology," IEEE Electron Device Letters, vol. 37, no. 3, pp. 269-271, 2016, doi: 10.1109/led.2016.2515103.
    [36] N. Chowdhury, Q. Xie, M. Yuan, K. Cheng, H. W. Then, and T. Palacios, "Regrowth-Free GaN-Based Complementary Logic on a Si Substrate," IEEE Electron Device Letters, vol. 41, no. 6, pp. 820-823, 2020, doi: 10.1109/led.2020.2987003.
    [37] H. Hahn et al., "First monolithic integration of GaN-based enhancement mode n-channel and p-channel heterostructure field effect transistors," in 72nd Device Research Conference, 22-25 June 2014 2014, pp. 259-260, doi: 10.1109/DRC.2014.6872396.
    [38] J. Chen et al., "A GaN Complementary FET Inverter With Excellent Noise Margins Monolithically Integrated With Power Gate-Injection HEMTs," IEEE Transactions on Electron Devices, vol. 69, no. 1, pp. 51-56, 2022, doi: 10.1109/ted.2021.3126267.

    無法下載圖示 校內:2030-02-05公開
    校外:2030-02-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE