簡易檢索 / 詳目顯示

研究生: 蔡孟倫
Tsai, Meng-Lun
論文名稱: 未來全球導航衛星系統於台灣區域效能分析
The Performance Analysis for Future GNSS in Taiwan Region
指導教授: 江凱偉
Chiang, Kai-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 92
中文關鍵詞: 全球導航衛星系統
外文關鍵詞: GPS, Galileo, GLONASS, GNSS
相關次數: 點閱:92下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球導航衛星系統(Global Navigation Satellite Systems, GNSS)可提供全球衛星、地面參考站、使用者設備相對於全球的分佈位置,故其對於測量與製圖技術的進步與發展有著重大的影響改變。本研究擬利用自行研發的GNSS模擬器,針對未來GPS (Global Positioning system)及Galileo整合式系統,提供台灣地區包含衛星可視數量、Dilution Of Precision (DOP)值、可靠度等性能指標,針對空間分佈、時間分佈及對遮蔽效應的敏感度等模式進行深入評估分析。

    GNSS的系統誤差模型決定模擬系統的精度,故本研究針對電離層、對流層、軌道誤差等系統誤差,發展符合台灣地區的誤差模式。利用衛星與使用者的坐標位置與相關資訊,吾人可計算兩者間的真實距離與載波相位,同時搭配上述各GNSS觀測量系統誤差模型及加入模擬的軌道誤差、對流層誤差、電離層誤差等系統誤差以產生模擬觀測量。最後吾人可利用模擬的觀測量及含整數週波未定值之載波相位進行後續多系統聯合解算演算法設計及結果計算分析用。

    實驗結果顯示,整合雙系統的發展比起過去單一GPS或Galileo系統具備可視衛星數量的增加、DOP值的下降、內可靠度與外可靠度值的降低等優勢,故預期未來聯合雙系統必然較現行GPS大幅提升執行效能與定位精度。當然,未來多系統多頻率的GNSS除了性能提升的課題值得持續探討外,多系統整合所衍生出系統互操作性及相容性之課題,亦值得未來相關領域研究活動之關注。

    Global Navigation Satellite Systems (GNSS) can provide the positions of satellites, reference stations and user receivers globally. It will have significant impact on the development of surveying and mapping technologies. Based on the compatibility of the navigation signals between modernized Global Positioning system (GPS) and Galileo, this study aims at exploiting the performances of each system and GPS/Galileo integrated system in Taiwan region, respectively. Therefore, a GNSS software simulator is developed in this study. The performance indices satellite visibility, dilution of precision (DOP) values and reliability are analyzed in terms of their temporal variations, spatial variations and sensitivities to signal obstruction.

    The correctness of simulated GNSS measurements used for further relay on the systematic error models of GNSS implemented in the software simulator. Therefore, the error models including ionospheric and tropospheric delays as well as orbital errors are investigated to fit the scope of Taiwan region. Given the positions of GNSS satellites and user, the simulated pseudoranges and carrier phase measurements can be obtained with the addition GNSS systematic error models and integer ambiguity for further use.

    The preliminary results presented in this sutdy indicate the improvement for the GPS/Galileo integrated constellation in terms of the visible satellites in comparison with GPS or Galileo individually. In addition, the averaged DOP values and reliability of the dual system are improved for the standalone GPS and Galileo scenario. Most importantly, using GPS/Galileo system provides sufficient availability for positioning in extreme masking environment, where positioning with GPS or Galileo is currently very difficult. Consequently, all the performance indices given in this study strongly indicate the benefits of future GPS/Galileo integrated positioning. On the other hand, the remaining issues concerning the compatibility and interoperability between GPS and Galileo should be investigated continuously to develop effective algorithms accommodating their measurements in the future study.

    摘要...………………………………………………………………………Ⅰ Abstract……………………………………………………………………Ⅱ 誌謝………………………………………………………………………Ⅲ 目錄………………………………………………………………………Ⅳ 表目錄……………………………………………………………………Ⅵ 圖目錄……………………………………………………………………Ⅶ 第一章 緒論………………………………………………………………1 1-1 研究背景與文獻回顧……………………………………………1 1-2 研究動機與目的…………………………………………………3 1-3 研究方法…………………………………………………………4 1-4 論文架構…………………………………………………………6 第二章 GNSS發展現況及趨勢…………………………………………8 2-1 現代化GPS………………………………………………………8 2-2 GLONASS.……………………………………………………14 2-3 Galileo……………………………………………………………18 2-4 Beidou/Compass………………………………………………20 2-5 未來GNSS之優勢與挑戰……………………………………22 第三章 GNSS星群模擬與性能指標…………………………………24 3-1 星群模擬…………………………………………………………24 3-2 GNSS觀測模型…………………………………………………30 3-3 可得度與精度……………………………………………………31 3-4 內可靠度與外可靠度……………………………………………34 3-4-1 MDB與BNR的計算概念…………………………………36 3-5 完好度……………………………………………………………37 3-6 電碼單點定位精度………………………………………………38 3-7 性能分析指標……………………………………………………41 第四章 GNSS系統誤差與動態軌跡……………………………………42 4-1 電離層延遲誤差…………………………………………………42 4-2 軌道誤差…………………………………………………………47 4-3 對流層延遲誤差…………………………………………………52 4-4 多路徑效應………………………………………………………56 4-5 系統時間差………………………………………………………57 4-6 坐標系統偏差……………………………………………………58 4-7 模擬觀測量………………………………………………………59 4-8 動態軌跡模擬……………………………………………………60 第五章 成果與分析……………………………………………………63 5-1 性能指標分析……………………………………………………63 5-1-1 區域分佈效能分析…………………………………………64 5-1-2 時間分佈效能分析…………………………………………72 5-1-3 遮蔽效應敏感度分析………………………………………80 5-2 系統誤差…………………………………………………………82 5-3 電碼單點定位精度分析…………………………………………84 第六章 結論與建議……………………………………………………87 6-1 結論………………………………………………………………87 6-2 未來研究建議……………………………………………………88 參考文獻…………………………………………………………………89

    1. Baarda, W., 1967, Statistical Concepts in Geodesy, Netherlands Geodetic Commission, Geodesy, Delft, vol. 2, no. 4.
    2. Black, H. D., and A. Eisner, 1984, Correcting Satellite Doppler Data for Tropospheric Effects, Journal of Geophysical Research, vol. 89, pp. 2616-2626.
    3. Bossche, M., Bourga, C., and B. Lobert, 2004, GPS Galileo Time Offset: How it Affects Positioning Accuracy and How to Cope with It, Proc. ION GNSS-04, Long Beach, CA, pp. 654-659.
    4. Chiang, K. W., Yang, M., Tsai, M. L., Chang, Y. Y., and C. K. Chu, 2006, The Technical Benefits of Future GNSS for Taiwan, Proc. IAIN/GNSS2006, Jeju, Korea, pp. 3-8.
    5. Dong, L., 2003, GPS Signal Simulator Development and Verification, Department of Geomatics Engineering, Thesis, University of Calgary, Calgary, Canada.
    6. EC, 2003, The Galilei project: GALILEO Design Consolidation, Online available at: http://europa.eu.int/comm./dgs/energy_transport, European Commission.
    7. FAA, 1997, Specification for the Wide Area Augmentation System, FAA-E-2892C(draft), Federal Aviation Administration.
    8. FSARF, 2005, GLONASS: Status and Perspectives: Munich Satellite Navigation Summit, Federal Space Agency for the Russian Federation, Munich.
    9. Gurtner, W., 2006, The Receiver Independent Exchange Format Version 3.00, Astronomical Institute, University of Bern.
    10. Hein, G. W., Godet, J. I., Jean-Luc, M., Jean-Christophe, E., Philippe, L., Rafael, K., and T. Pratt, 2002, Status of Galileo Frequency & Signal Design, Proc. US Institute of Navigation (ION) GPS’2002 meeting, Oregon Convention Center, Portland, Oregon, USA, vol. (CD), pp. 24-27.
    11. Hopfield, H. S., 1972, Tropospheric range error parameters-further studies, Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD.
    12. Kaplan, E., and C., Hegarty, 2005, Understanding GPS: Principles and Applications, Artech House, Boston, MA.
    13. Klobuchar, J. A., 1987, Ionospheric Time-Delay Algorithm for Single- Frequency GPS Users, Proc. IEEE Transactions on Aerospace and Electronic System, vol. AES-23.
    14. Lachapelle, G., 2002, NAVSTAR GPS: Theory and Applications, Department of Geomatics Engineering, University of Calgary, Calgary, Canada.
    15. Leick, A., 1995, GPS Satellite Surveying, 2nd, John Willey & Sons, INC., New York, USA.
    16. Luo, N., 2001, Precise Relative Positioning of Multiple Moving Platforms Using GPS Carrier Phase Observables, Department of Geomatics Engineering, Ph. D dissertation, University of Calgary, Calgary, Canada.
    17. McDonald, K. D., 2001, A Future GNSS Concern on the Modernization of GPS and the Evolution of Galileo, Proc. ION GPS 2001, Salt Lake City, UT.
    18. McDonald, K. D., 2002, The Modernization of GPS: Plans, New Capabilities and the Future Relationship to Galileo, Journal of Global Position System, vol. 1, no. 1, pp. 1-17.
    19. Merino, M. M. R., Samper, M. D. L., Alarcon, A. J. G., and A. G. Quijada, 2007, Autonomous Low Cost Regional Navigation Satellite Systems Based on Geosynchronous Eccentric and Inclined Orbits, Proc. ION GNSS 2007, Fort Worth, TX.
    20. Miller, J., 2004, GPS & GALILEO: Evolution towards GNSS, Proc. ION NTM-04, San Diego, CA, pp. 73-91.
    21. Miller, J., 2007, Global Positioning System Policy and Program Update, Proc. ION GNSS 2007, Fort Worth Convention Center, Fort Worth, TX.
    22. Misra, P., and P. Enge, 2001, Global Positioning System: Signals, Measurements, and performance, Ganga-Jamuna Press, Lincoln, Massachusetts.
    23. O’Keefe, K., 2001, Availability and Reliability Advantages of GPS/Galileo Integration, Proc. ION GPS 2001, Salt Lake City, UT.
    24. Parkinson, B. W., and J. J. Spilker, 1996, Global Positioning System: Theory and Applications, Volume I, American Institute of Aeronautics and Astronautics, Washington, D.C.
    25. Ray, J. K., 2000, Mitigation of GPS code and carrier phase multipath effects using a multi-antenna system, Ph. D dissertation, University of Calgary, Calgary, Canada.
    26. Richard, T., 2005, The Impact of Future Global Navigation Satellite Systems on Precise Carrier Phase Positioning, Thesis, Department of Geomatics Engineering, University of Calgary, Calgary, Canada.
    27. Saastamoinen, J., 1972, Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging of Satellites, vol. 15, Geophysics Monograph Series, American Geophysical Union, Washington, DC.
    28. Schaer, S., 1997, How to Use CODE's Global Ionosphere Maps, http://www.aiub.unibe.ch/ionosphere.html, Astronomical Institute, University of Bern, Switzerland.
    29. Schaer, S., 1999, Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph. D dissertation, Astronomical Institute, University of Bern, Switzerland.
    30. Seeber, G., 1993, Satellite Geodesy: Foundations, methods, and applications, Walter de Gruyter & Co., Berlin, Germany.
    31. Sielski, H., 2000, The Impacts of GPS Modernization on DAG-TM, DAG-TM Workshop CNS Breakout Session.
    32. Teunissen, P. J. G., 1998a, On the integer normal distribution of the GPS ambiguities, Artificial Satellites, vol. 33, no. 2, pp. 49-64.
    33. Teunissen, P. J. G., 1998b, Minimal detectable biases of GPS data, Journal of Geodesy, vol. 72, pp. 236-244.
    34. Verhagen, S., 2005, The GNSS integer ambiguities: estimation and validation, Ph. D dissertation, Delft University of Technology, Nederland.
    35. Verhagen, S., 2007, Reliable positioning with the next generation global navigation satellite systems, Proc. 3rd International Conference on Recent Advances in Space Technology (RAST 2007), Istanbul, Turkey, pp. 618-623.
    36. Verhagen, S., and P. Joosten, 2003, Algorithms for design computations for integrated GPS – Galileo, Proc. GNSS 2003, Graz, Austria.
    37. Zhang, W., 2005, Triple Frequency Cascading Ambiguity Resolution for Modernized GPS and GALILEO, Ph. D dissertation, Department of Geomatics Engineering, University of Calgary, Calgary, Canada.
    38. Zinoviev, A. E., 2005, Using GLONASS in Combined GNSS Receivers: Current Status, Proc. ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA.

    下載圖示 校內:立即公開
    校外:2008-08-07公開
    QR CODE