簡易檢索 / 詳目顯示

研究生: 林佳儒
Lin, Chia-Ju
論文名稱: 混合磁致伸缩複合材料與時間相關的非線性有效響應
The effective time-dependent and nonlinear responses of hybrid magnetostrictive composites
指導教授: 林建宏
Lin, Chien-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 71
中文關鍵詞: 時間相關混和複合材料磁致伸縮微觀力學
外文關鍵詞: time-dependent, hybrid composite, magnetostrictive,, micromechanics
相關次數: 點閱:52下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇研究討論了磁致伸縮混和複合材料與時間相關的非線性響應,混和複合材料可以
    有效的提升整體複合材料的性質,並且採用黏彈性的基材以對於時間相關的探討。過
    程中,將會使用加強材Terfenol-D(纖維), CoFe2O4 (顆粒)和基質材料HDPE,針對這
    三種材料會分別使用不同的本構方程式。再來利用hybrid unit-cell 的微觀力學模型進
    行模擬,模擬過程先將顆粒嵌入基材中形成新的基材接著再加入纖維製備成混和複合
    材料。對於混和複合材料不同的特性與過去文獻的實驗相做比對,去確認模擬的可行
    性,接著再進行循環磁場加載下與時間相關的非線性響應,並且討論了不同的參數研
    究,像是邊界條件,加強材體積分率,磁場加載率,預應力,溫度和ΔE效應。然後發
    現隨著顆粒的增加可以提升整體複合材料的剛性,並且黏彈性基材也透過微觀力學關
    係進而導致了與時間相關的磁彈耦合的效應。

    This research discusses the time-dependent nonlinear response of magnetostrictive hybrid composite materials. The use of hybrid composites effectively enhances the overall properties of composite materials, incorporating viscoelastic matrices to study their time-dependent behavior. In this process, three different materials are employed: the reinforcing materials Terfenol-D (fiber) and CoFe2O4 (particle), and the matrix material HDPE. Each of these materials is characterized using different constitutive equations. Simulations are conducted using a hybrid unit cell micromechanical model. Initially, particles are embedded
    into the matrix to form a new composite material. Then, fibers are added to prepare the hybrid composite material. To validate the simulation results and ensure their feasibility, a comparison is made between the characteristics of the hybrid composite material and experimental data from previous literature. Subsequently, the time-dependent nonlinear response under cyclic magnetic field loading is examined, considering various parameters such as boundary conditions, volume fraction of reinforcing materials, loading rate of the magnetic field, prestress, temperature, and ΔE effect. It is observed that increasing the particle content enhances the overall stiffness of the composite material, and the viscoelastic matrix exhibits a magnetic-elastic coupling effect in relation to time through microstructural mechanics.

    Abstract i Table of contents iii List of figures iv List of tables vi CHAPTER 1 Introduction 1 1-1 Motivation 1 1-2 Literature review 4 1-2-1 Magnetostrictive behavior 4 1-2-2 Magnetostrictive composite 6 1-2-3 Polymer matrix 8 1-2-4 Hybrid composite 10 1-3 Research objective 12 CHAPTER 2 Constitutive equations 13 2-1 Magnetostrictive material 13 2-2 Piezomagnetic material 17 2-3 Polymer matrix 20 CHAPTER 3 Linearized forms of the nonlinear constitutive models 23 3-1 Magnetostrictive material 25 3-2 Piezomagnetic material 26 3-3 Polymer matrix 26 CHAPTER 4 Micromechanics model 28 4-1 Hybrid-unit-cell model 28 CHAPTER 5 Results and discussion 37 5-1 Experimental verification 37 5-2 Parameter studies 45 CHAPTER 6 Conclusion 60 CHAPTER 7 Future work 62 Appendix A 63 Reference 69

    [1] Aboudi, J., X. Zheng and K. Jin (2014). "Micromechanics of magnetostrictive composites." International Journal of Engineering Science 81: 82-99.
    [2] Al-Haik, M. S., M. Y. Hussaini and H. Garmestani (2006). "Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network." International Journal of Plasticity 22(7): 1367-1392.
    [3] Baglari, S., M. Kole and T. K. Dey (2011). "Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene - fly ash composites." Indian Journal of Physics 85(4): 559-573.
    [4] Carman, G. P. and M. Mitrovic (1995). "Nonlinear Constitutive Relations for Magnetostrictive Materials with Applications to 1-D Problems." Journal of Intelligent Material Systems and Structures 6(5): 673-683.
    [5] Cohen, L. J. and O. Ishai (1967). "The Elastic Properties of Three-Phase Composites." Journal of Composite Materials 1(4): 390-403.
    [6] Dong, X., J. Ou, X. Guan and M. Qi (2010). "Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance." Journal of Magnetism and Magnetic Materials 322(22): 3648-3652.
    [7] Dong, X., M. Qi, X. Guan and J. Ou (2010). "Microstructure analysis of magnetostrictive composites." Polymer Testing 29(3): 369-374.
    [8] G.C. Papanicolaou, S. P. Z. (2011). "1 - Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites." Creep and Fatigue in Polymer Matrix Composites.
    [9] Haj-Ali, R. M. and A. H. Muliana (2003). "A micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials." International Journal of Solids and Structures 40(5): 1037-1057.
    [10] Haj-Ali, R. M. and A. H. Muliana (2004). "Numerical finite element formulation of the Schapery non-linear viscoelastic material model." International Journal for Numerical Methods in Engineering 59(1): 25-45.
    [11] Hasanzadeh, M., R. Ansari and M. K. Hassanzadeh-Aghdam (2019). "Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes." Mechanics of Materials 129: 63-79.
    [12] Hashemi, R. (2016). "On the overall viscoelastic behavior of graphene/polymer nanocomposites with imperfect interface." International Journal of Engineering Science 105: 38-55.
    [13] Hristoforou, E. and A. Ktena (2007). "Magnetostriction and magnetostrictive materials for sensing applications." Journal of Magnetism and Magnetic Materials 316(2): 372-378.
    [14] Ishai, O. and L. J. Cohen (1967). "Elastic properties of filled and porous epoxy composites." International Journal of Mechanical Sciences 9(8): 539-546.
    [15] Jiles, D. C. and J. B. Thoelke (1995). "Magnetization and Magnetostriction in Terbium–Dysprosium–Iron Alloys." Physica Status Solidi (a) 147(2): 535-551.
    [16] Kim, J.-Y. (2011). "Micromechanical analysis of effective properties of magnetoelectro-thermo-elastic multilayer composites." International Journal of Engineering Science 49(9): 1001-1018.
    [17] Kim, J. S. and A. H. Muliana (2009). "A time-integration method for the viscoelasticviscoplastic analyses of polymers and finite element implementation." International Journal for Numerical Methods in Engineering 79(5): 550-575.
    [18] Le Moal, P. and D. Perreux (1994). "Evaluation of creep compliances of unidirectional fibre-reinforced composites." Composites Science and Technology 51(4): 469-477.
    [19] Lee, D. J., H. Oh, Y. S. Song and J. R. Youn (2012). "Analysis of effective elastic modulus for multiphased hybrid composites." Composites Science and Technology 72(2): 278-283.
    [20] Lee, J., J. G. Boyd and D. C. Lagoudas (2005). "Effective properties of three-phase electro-magneto-elastic composites." International Journal of Engineering Science 43(10): 790-825.
    [21] Li, B., T. Zhang, Y. Wu and C. Jiang (2019). "High-performance magnetostrictive composites with large particles volume fraction." Journal of Alloys and Compounds 805: 1266-1270.
    [22] Lin, C.-h. and Y.-Z. Lin (2021). "Analysis of nonlinear piezomagnetism for magnetostrictive terfenol-D composites." Journal of Magnetism and Magnetic Materials 540.
    [23] Lin, C.-H. and A. Muliana (2016). "Nonlinear and Rate-Dependent Hysteretic Responses of Active Hybrid Composites." Materials Sciences and Applications 07(01): 51-72.
    [24] Lin, C. H. and A. Muliana (2013). "Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites." Acta Mechanica 224(7): 1471-1492.
    [25] Mech, R. and J. Kaleta (2017). "Influence of Terfenol-D Powder Volume Fraction in Epoxy Matirx Composites on their Magnetomechanical Properies." Acta Mechanica et Automatica 11(3): 233-236.
    [26] Rizzo, K.-J., O. Hubert and L. Daniel (2010). "Magnetic and Magnetostrictive Behavior of Iron-Silicon Single Crystals Under Uniaxial Stress." IEEE Transactions on Magnetics 46(2): 270-273.
    [27] Roerden, A. (2000). "The inelastic response of porous, hybrid-fiber composites." Composites Science and Technology 60(12-13): 2443-2454.
    [28] Rosen, B. W. and Z. Hashin (1970). "Effective thermal expansion coefficients and specific heats of composite materials." International Journal of Engineering Science 8(2): 157-173.
    [29] Schapery, R. (1974). "Viscoelastic Behavior and Analysis of Composite Materials." Composites of Materials(5): 85-168.
    [30] Shen, K.-J. and C.-h. Lin (2021). "Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites." Acta Mechanica 232(3): 983-1003.
    [31] Taylor, R. L., K. S. Pister and G. L. Goudreau (1970). "Thermomechanical analysis of viscoelastic solids." International Journal for Numerical Methods in Engineering 2(1): 45-59.
    [32] Thuruthimattam, B. J., A. M. Waas and A. S. Wineman (2001). "Stress transfer modeling in viscoelastic polymer matrix composites." International Journal of Non-Linear Mechanics 36(1): 69-87.
    [33] Weng, G. J. (1984). "Some Elastic Properties of Reinforced Solids, with Special Reference to Isotropic Ones Containing Spherical Inclusions." International Journal of Engineering Science 22(7): 845-856.
    [34] Yan, S., W. Wang, X. Yan, J. Zhou and Y. Liu (2022). "Temperature characterization of magnetic and elastic parameters of TFD giant magnetostrictive materials." Journal of Magnetism and Magnetic Materials 563.
    [35] Yin, H., L. Sun and J. Chen (2006). "Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles." Journal of the Mechanics and Physics of Solids 54(5): 975-1003.
    [36] Zhan, Y.-S. and C.-h. Lin (2020). "A Constitutive Model of Coupled Magneto-thermomechanical Hysteresis Behavior for Giant Magnetostrictive Materials." Mechanics of Materials 148.
    [37] Zhan, Y.-S. and C.-h. Lin (2021). "Micromechanics-based constitutive modeling of magnetostrictive 1–3 and 0–3 composites." Composite Structures 260.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE