| 研究生: |
吳俊德 Wu, Chieng-Teh |
|---|---|
| 論文名稱: |
以化學共沉法製備鑭銦(鎵)鋯氧化物及其性質研究 Preparation and Characterization of Lanthanum-Indium(Gallium)-Zirconium Oxides by Chemical Coprecipitation |
| 指導教授: |
高振豐
Kao, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 介電常數 、化學共沉法 |
| 外文關鍵詞: | dielectric constant, LaInO3, SQUID, LaGaO3, chemical coprecipitation, XRD |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗著力於以化學共沉法製備不同比例的鑭銦鋯和鑭鎵鋯氧化物陶瓷粉末,此乃由於化學共沉法具有高均勻性、高反應性、高品質,以及精確的化學計量比;並探討此化合物的合成方式以及特性分析。
以化學共沉法製得鑭銦鋯和鑭鎵鋯兩著之前導化合物,經冷凍乾燥後,未含鋯者分別於1100℃煆燒2小時,900℃煆燒4小時由XRD分析得知其主要化合物分別為LaInO3和LaGaO3。將煆燒後之含鋯產物,壓錠後,於各溫度下燒結8小時,經XRD分析得知,其主要產物分別為LaInO3、La2Zr2O7和LaGaO3、La2Zr2O7混合物。
利用LCR測量儀測量其電容值經公式換算成介電常數知其介電常數均不甚高,LaInO3部份均在40以下,而LaGaO3在60以下。而兩著的介電常數均隨著試片燒結溫度和LCR量測頻率的升高而降低。
由維克氏硬度測量儀分析結果得知,其硬度隨著燒結溫度的升高而增加;而添加鋯的確可以改善LaInO3和LaGaO3的硬度。兩者之最佳添加量均為1mole%。
利用磁性測量儀量測試樣之磁化係數與溫度關係變化之情形,知其均為具反磁性物質。
Chemical coprecipitation has high homogeneity, high reactivity, high quality and exact stochiometry. The goal of this study is that the lanthanum-indium /gallium/-
zirconium oxide powders were prepared by coprecipitation method. The synthesis, characterization and electrical properties of the above compounds were investigated.
The precursors of lanthanum-indium-zirconium and lanthanum –gallium-
zirconium oxide with OH- ligands were prepared by coprecipitation. After freeze drying, the precursors were calcined at 1100 ℃ for 2 h and were calcined at 900 ℃ for 4 h to obtain the corresponding compounds without zirconium respectively. It indicated from XRD patterns that the major compounds were LaInO3 and LaGaO3, respectively.
Calcined powders were pressed into disks and then were sintered for 8h at various temperatures. From XRD patterns, it revealed that they formed solid solution systems of LaInO3-La2Zr2O7 and LaGaO3 -La2Zr2O7,respectively.
LCR meter was used to measure the electrical capacity of the samples. Dielectric constants were calculated from the electrical capacity via the formula. It was found that both of the two systems have low dielectric constants. The dielectric constants of LaInO3-La2Zr2O7 system were all below 40 and those of LaGaO3-La2Zr2O7 system were all below 60. The dielectric constant decreases with increasing sintering temperature and frequency, measured by the LCR.
The hardness of sintered bodies increases with increasing the sintering temperature. The mechanical properties of LaInO3 and LaGaO3 were truly improved by adding zirconium. The optimal additions of zirconium are 1mole% for both of the above systems.
From the variations of susceptibility with temperature analyzed by SQUID, we found that products exhibit diamagnetisim.
1. S.J. Schneider, Jr. ,Ed ; Engineer Materials Handbooks, Vol.4 Ceramics
and Glasses, ASM International,1991.
2. 工業技術研究院工業材料研究所與經濟部中小企業處聯合編印
“精密陶瓷科技” , p4-5, 1987.
3. M. P. Rosynek , D. T. Magnuson, “Preparation and Characterization
of Catalytic Lanthanum Oxide “, J. Catalyst. , 46, 402-413, 1977.
4. R. C. Gavie, “Zirconium dioxide and some of its binary system : High temperature oxide part Ⅱ”,Ed. by A.M. Alper, Academic Press, 117,1970.
5. A. F. Sammells, R. L. Cook, J. H. White, J. J. Osborme, R. C. MacDuff, “Rational Selection of Advanced Solid Electrolytes for Intermediate Temperature Fuel-Cells”, Solid State Ionics,52(1-3),111-123,1992
6. S. Tanaka, N. Hirose and T. Tanaki, “Evaluation of Raney-nickel Cathodes Prepared with Aluminum Powder and Titanium Hydride Powder”, J. Electrochem. Soc.,146, 2477-2480, 1999
7. T. Iwata, “Characterization of Ni-YSZ Anode Degradation for Substrate-type Solid Oxide Fuel Cells”, J. Electrochem. Soc. 143,1521-1525,1996.
8. H. Nishizawa, T. Tani, K. Matsuoka, “Crystallization Process of Cubic ZrO2 in Calcium Acetate Solution”, J. Mat. Sci., 19, 2921-2926, 1984.
9. A. Benedetti, G. Fagherazzi, F. Pinna, S. Polizzi, “Structural Properties of Ultra Fine Zirconia Powders Obtained by Precipitation Method”, J. Mat. Sci. , 25, 1473-1478, 1990.
10.L. Lerot, F. Legrand, P. De Bruycker, “Chemical Control in
Precipitation of Spherical Zirconia Particles”, J. Mat. Sci., 26, 2353-
2358, 1991.
11. R. C. Gavie, “Zirconium Dioxide and Some of Its Binary System,” in “High Temperature Oxide part Ⅱ”,Ed. By A.M. Alper, Academic Press, 117-129,1970.
12. B. Duricic, D. Kolar, M. Komac, “Synthesis and Characteristics of Zirconium Complexes”, J. Mat. Sci. , 25, 540-545, 1991.
13. C. Morterra, V. Boils, B. Fubini, L. Orio, T. B. Williams, “A FTIR and HERM Study of Some Morphological and Adsorptive Properties of Monoclicin ZrO2 Microcrystal”, Surface Sci., 251/252, 540-545, 1991
14. Edited by A. J. Downs , “Chemistry Of Aluminium, Gallium, Indium, Thallium”,1st edition, Blackie Academic & Professional, London,
284,1993.
15. P. Breteque,“Kirk-Othmer Encyclopedia of Chemical technology
,3rd edition”, Wiely, New York, 11, 604, 1980.
16. T. Fujitani, I. Nakamura, “Methanol Synthesis From CO and CO2 Hydrogenations Over Supported Palladium Catalysts”, Bulletin of the Chemical Society of Japan, 75(6), 1339-1398, 2002.
17. Y. Obana, K. Yashiki, M. Ito, H. Nishiguchi, T. Ishihara, Y. Takita, “Oxidation of Isobutane to Methacrolein Over Ga2O3/BizMo3O12 Catalysts”, Journal of the Japan Petroleum Institute, 46(1) , 53-61,
2003.
18. U. Hoefer, J. Frank, M. Fleischer, “High temperature Ga2O3-gas Sensors and SnO2-gas Sensors : a Comparison”, Sensors and Actuators B-Chemical, 1-3, 78, 2001
19. T. Fujitani, Nakamura, “Methanol synthesis from CO and CO2 Hydrogenations over supported palladium catalysts”, Bulletin of the Chemical Society of Japan, 75(6), 1393-1398, 2002.
20. Edited by A. J. Downs , “Chemistry Of Aluminium, Gallium, Indium, Thallium”,1st edition, Blackie Academic & Professional, London,
286, 1993.
21. E.F. Milner, C.E.T.White, “Kirk-Othmer Encyclopedia of Chemical Technology”, 3rd edn., Wiley, New York, 13, 207, 1981.
22. TKH Starke, GSV Coles , H Ferkel, “High Sensitivity NO2 Sensors for Environmental Monitoring Produced Using Laser Ablated NanoCrystalline Metal Oxides”, Sensors and Actuators B- Chemical,
85(3), 239-245, 2002.
23. C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han, C. W. Zhou, “In2O3 Nanowires as Chemical Sensors”, Applied Physics Letters,
82(10), 1613-1615, 2003.
24. M. Mizuno, T.Yamada, T. Ohtake, “Phase Diagram of the System
Gallium Trioxide-Lanthanum Oxide at High Temperatures,” Yogyo-Kyokaishi, 93(6), 295-300, 1985.
25. C. J. Howard, B. J. Kennedy, “The Orthorhombic and Rhombohedral Phases of LaGaO3- a Neutron Powder Diffraction Study”, J. Phys: Condens. Matter, 11, 3229-3236, 1999.
26. B. J. Kennedy, T. Vogt, C. D. Martin, J. B. Parise, J. A. Hrijac, “Pressure-induced Orthorhombic to Rhombohedral Phase Transition in LaGaO3”, J. Phys: Condens Matter,13(48),L925-L930, 2001.
27. L. Vasylechko, R. Niewa, H. Borrmann, M. Knapp, D. Savytskii,
A. Matkovski, U. Bismayer, M. Berkowski ,“R-3c-Pbnm Phase Transition of La1-xSmxGaO3(0< x< 0.3) Perovskites and Crystal Structures of the Orthorhombic and Trigonal Phases ”, Solid state ionics, 143, 219-, 2001.
28. M. Berkowski, J. Fink-Finowicki, W. Piekarczyk, L. Perchuc, P. Byszewski, L. O. Vasylechko, D. I. Savytskij, K. Mazur, J. Sass, E. Kowalska, J. Kapusniak, “Czochralski Growth and Structural Investigations of La1-xNdxGaO3 Solid Solution Single Crystals”,
Journal of Crystal Growth, 209, 75-80, 2000.
29. M. Berkowski, J. Fink-Finowicki, W. Piekarczyk, L. Perchuc, P. Byszewski, L. O. Vasylechko, D. I. Savytskij, K. Mazur, J. Sass, E. Kowalska and J. Kapusniak, “Czochralski Growth and Structural Investigations of La1-xNdxGaO3 Solid Solution Single Crystals”,
Journal of Crystal Growth, 209, 75-80, 2000.
30. T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor”, J. Am. Chem. Soc., 116, 3801-3803, 1994.
31. P. N. Huang, A. Petric, “Super Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesuium,”
J. Electronchem. Soc., 143(5), 1996.
32. R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki,
K. Miura, “Solid Oxide Fuel Cell with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode, and Ni-Samaria-doped Ceria Cermet anode”, J. Electrochem. Soc.,146, 2006-2010, 1999.
33. J. Drennan, V. Zelizko, D. Hay, FT. Ciacchi, S. Rajendran, SPS. Badwal, “Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3-x”, J. Mater. Chem.,
7(1), 79-83, 1997.
34. K. Q. Huang, M. Feng, J. B. Goodenough, “Sol-Gel Synthesis of a
New Oxide-Ion Conductor Sr- and Mg-doped LaGaO3 Perovskite”,
J. Amer. Ceram. Soc., 79(4), 1100-1104, 1996
35. N. M.Sammes, F. M. Keppeler, H. Nafe, F. Aldinger, “Mechanical Properties of Solid-State-Synthesized Strontium- and Magnesium-
doped Lanthanum Gallate”, J. Am. Ceram. Soc., 81, 3104-3108, 1998
36. K. K. Wioletta, K. Dietmar, M. Miroslaw , C. Chatillon, S. Lorenz, H. Klaus, “Vaporization Studies of the La2O3-Ga2O3 System”, Journal of the American Ceramic Society, 85(9), 2299-2305, 2002.
37. M. Ernest, C. R. Robbins , F.M. Howard, ”Phase Diagrams for Ceramists” ,American Ceramic Society. ,135.
38. D. Lybye, F. W. Poulsen, M. Mogensen, “Conductivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites”, Solid State Ionics, 128, 91-103, 2000
39. E. Ruiz-Trejo, G. Tavizon, A. Arroyo-Landeros, “Structure, Point Defects and Ion Migration in LaInO3”, Journal of Physiscs and Chemistry of Solids, 64, 515-521, 2003.
40. H. He, X. Huang, L. Chen, “The Effect of Dopant valence on the Structure and Electrical Conductivity of LaInO3”, Electrochimica Acta, 46, 2871-2877, 2001.
41. Hongpeng He, Xuejie Huang, Liquan Chen, “Sr-doped LaInO3 and Its Possible Application in a Single Layer SOFC”, Solid State Ionics, 130, 9183-193, 2000.
42. Hong Peng He, Huang, Xue Jie Che, Li Quan, “An Effective Way to Detect the Secondary Phase in Sr-doped LaInO3”, Journal of Physics and Chemistry of Solids, 62, 701-709, 2001.
43. Rouanet. A. ”Phase Diagrams for Ceramists”,No.5232,1981
44. M.T. Vandenborre, E. Husson, “Comparision of the Force Field in Various Pyrochlore Families. I. The A2B2O7 Oxides”, J. Solid State Chem. ,50, 362-p371, 1983
45. Eugene Aleshin and Rustum Roy, “Crystal Chemistry of Pyrochlor,”, J. Am. Ceram. Soc. , 45, 18-25, 1962.
46. R.A. McCauley, F.A. Hummel, “Luminescence as an Indication of Distortion in A23+B24+O7 Type Pyrochlores”, J. Lumin., 6, 105-115, 1973.
47. H. Kido, S. Komarneni, R. Roy, “Preparation of La2Zr2O7 by sol-gel route”, J. Am. Ceram. Soc., 74, 422 -424,1991.
48. K. Huang and J. B. Goodenough, “Wet Chemical Synthesis of Sr-and Mg-Doped LaGaO3, a Perovskite-Type Oxide-Ion Conductor”,
Journal of Solid State Chemistry, 136, 274-283, 1998.
49. D. W. Johnson. , Jr., “Nonconventional Powder Preparation Techniques”, Ceram. Bull., 60, 221-224, 1981
50. J. A. Dean, “Solubility Products,” Lange’s Handbook of Chemistry”,
Chap.5 McGraw-Hill Book Company, New York,1970
51. A. Benedetti, G. Fagherazi, F. Pinna, S. Polizzi, “Structural Properties of Ultra-Fine Zirconia Powders Obtained by Precipitation Methods”, J. Mat. Sci., 25, 1473-1478, 1990
52. B. Duricic, D. Kolar, Milos Komac, “Synthesis and Characteristics of Zirconia Fine Powders from Organic Zirconium Complexs”, J. Mat.Sci., 25, 1132-1136, 1990
53. L. Lerot, F. Legrand, P. De Bruycker, “Chemical Control in Precipitation of Spherical Zirconia Particles”, J. Mat. Sci. , 26, 2353-2358,1991
54. Z. Y. Zheng, B. J. Guo and X. M. Mei, “A New Technology of Coprecipitation Combined with High Temperature Melting for Preparing Single Crystal Ferrite Powder”, J. Magnetism and Magnetic Materials, 78 ,73-76,1989.
55. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”,2nd Edition, John Wiley & Sons, 67-68, 1975
56. M. Dietz and H. D. Tietz, “Characterization of Engineering Ceramics by Indentation Methods,” J. Mat. Sci., 59, 3731-3739, 1990
57. A. G. Evans, E.A. Charles, “Fracture Toughness Determinations by Indentations”, J. Amer. Ceram. Soc., 59, 371-372, 1976
58. B.D. Cullity, “Introduction to MagneticMaterials”, Addison-Wesley
,Chap.3, 85-203, 1972.
59. S. Chikazumi, Stanley H. Charap, “Physics of Magnetism,”
John Wiley & Sons, 37-109, 1985.
60. J.W. Robinson, “Handbook of Spectroscopy,” Crc.Press, 96-99, 1974.
61. F.F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67, 83-89, 1984
62. M. D. Sacks and H. A. Pask,“Sintering of Mullite- Containing
Materials :Ⅱ, Effect of Agglomeration,” J. Am. Ceram. Soc., 65, 70-77, 1982.
63. A. A. Zaky and R. Hawley, “Dielectric Solids”, Dover,N.Y., 281-335,
1970.
64. W. D. Kingery, H.K. Bowen, D.R. Uhlmann, “Introduction to
Ceramics,”2nd Edition, John Wiley & Sons, 913-964, N.Y., 1976.