簡易檢索 / 詳目顯示

研究生: 林欣盈
Lin, Hsin-Ying
論文名稱: 研究半乳糖對老鼠肝臟脂肪代謝的影響
Effects of galactose on fat metabolism in mice liver
指導教授: 謝淑珠
Shiesh, Shu-Chu
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 49
中文關鍵詞: 半乳糖血症脂肪肝活性氧化物質粒腺體
外文關鍵詞: galactosemia, fatty liver, reactive oxygen species, mitochondria
相關次數: 點閱:41下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半乳糖血症的病患會出現一些肝臟病癥,像是血液中的半乳糖升高、黃疸、肝腫大、肝功能試驗異常和脂肪肝。研究顯示體內累積過多的半乳糖會增加肝臟內活性氧化物質和干擾肝臟的待謝途徑。 我們假定半乳糖引起的活性氧化物質堆積在半乳糖血症病患的肝臟病癥中扮演重要角色。因此,本研究將探討半乳糖引起的活性氧化物質對於肝臟損傷和脂肪代謝的影響;並且探討以抗氧化物N-乙醯半胱胺酸(NAC)治療是否能回復半乳糖造成的改變。 肝細胞AML12培養在含有不同比例的葡萄糖和半乳糖培養基中,以18 mM葡萄糖培養基的作為控制組,與11.5 mM葡萄糖加6.5 mM半乳糖、5 mM 葡萄糖加13 mM半乳糖、5 mM葡萄糖比較。動物實驗方面,以管餵的方式給予C57BL/6小鼠連續60天的500 mg/Kg半乳糖,500 mg/Kg半乳糖加上200 mg/Kg的N-乙醯半胱胺酸,控制組則給予生理食鹽水。結果發現細胞培養在含有半乳糖的培養基中,會使細胞存活率減少、粒線體超氧化物增加,以及減少AMPK的磷酸化;細胞內的三磷酸腺苷、有氧呼吸作用和PGC1-α和SREBP-1蛋白表現量則沒有改變。 在活體實驗中,餵食半乳糖的小鼠體重下降,從組織切片可以看出有明顯的脂肪堆積在肝臟中,肝臟組織中的三酸甘油酯傾向上升且SREBP-1的表現量有增加的傾向。而給予N-乙醯半胱胺酸的治療能夠回復半乳糖引起的肝臟三酸甘油酯增加和組織切片中的脂肪堆積。總結來說,我們的研究顯示半乳糖會藉由增加氧化壓力和脂肪生成而造成脂肪肝,而給予N-乙醯半胱胺酸的治療可以有效的減緩肝臟的脂肪堆積。

    Galactosemia patients present many symptoms such as elevated galactose level in blood, jaundice, hepatomegaly, abnormal liver function tests and fatty liver. Excess galactose was reported to induce reactive oxygen species (ROS) and disturb metabolic pathways in liver. We hypothesized that galactose-induced ROS played an important role in liver disorders in galactosemia. Therefore, this study was aimed to examine the effects of galactose-induced ROS on liver injuries and fat metabolism, and to investigate whether N-acetyl cysteine (NAC) would alleviate these changes. AML12 hepatocytes were cultured in DMEM/F12 medium with different ratio of glucose and galactose, including 18 mM glucose, 11.5 mM glucose plus 6.5 mM galactose, 5 mM glucose plus 13 mM galactose and 5 mM glucose. C57BL/6 mice were given 500 mg/Kg galactose and 500 mg/Kg galactose plus 200 mg/Kg NAC for 60 days by oral gavage. The results showed that galactose-containing culture medium resulted in decreased cell viability, increased mitochondrial superoxide and reduced AMPK phosphorylation in AML12 cells. The protein expression of PGC1-α and SREBP-1, oxygen consumption rate, ATP content were not altered in hepatocytes grown with galactose. In addition, in vivo studies showed decreased body weight and remarkable lipid accumulation in the liver of galactose-treated mice, along with increased liver TG and SREBP-1 expression. The NAC treatment diminished liver TG content and histological fatty change caused by galactose administration. In conclusion, galactose-induced liver steatosis through increased oxidative stress in mice hepatocytes, and NAC treatment could alleviate the lipid accumulation in liver.

    摘要 I Abstract II Acknowledgement III Index IV Figure list VI Abbreviation VII Introduction 1 Galactose 1 Galactosemia 2 Galactose and liver damage 4 Oxidative stress in liver diseases 5 N-acetyl cysteine 5 Aim and Strategies 7 Materials and Methods 8 Cell culture 8 Measurement of total protein concentrations 8 Western blotting 9 Cell viability assay 11 Measurement of cellular ROS 12 Measurement of mitochondrial membrane potential 12 High-resolution respirometry measurements 13 ATP measurements 13 Animal study 14 Liver lipid extraction 14 Biochemical analysis of serum 15 Liver Histology 15 Statistical analysis 15 Results 16 Discussion 21 Conclusion 25 References 26 Figures 33 Appendix 46

    1. Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med 2013;34:183-96.
    2. Roser M, Josic D, Kontou M, et al. Metabolism of galactose in the brain and liver of rats and its conversion into glutamate and other amino acids. J Neural Transm (Vienna) 2009;116:131-9.
    3. Coelho AI, Berry GT, Rubio-Gozalbo ME. Galactose metabolism and health. Curr Opin Clin Nutr Metab Care 2015;18:422-7.
    4. Coelho AI, Rubio-Gozalbo ME, Vicente JB, et al. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 2017;40:325-342.
    5. Welling L, Bernstein LE, Berry GT, et al. International clinical guideline for the management of classical galactosemia: diagnosis, treatment, and follow-up. J Inherit Metab Dis 2017;40:171-176.
    6. Feillet F, Merten M, Battaglia-Hsu SF, et al. Evidence of cataplerosis in a patient with neonatal classical galactosemia presenting as citrin deficiency. J Hepatol 2008;48:517-22.
    7. Charlwood J, Clayton P, Keir G, et al. Defective galactosylation of serum transferrin in galactosemia. Glycobiology 1998;8:351-7.
    8. Coman DJ, Murray DW, Byrne JC, et al. Galactosemia, a single gene disorder with epigenetic consequences. Pediatr Res 2010;67:286-92.
    9. Osawa T, Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann N Y Acad Sci 2005;1043:440-51.
    10. Waggoner DD, Buist NR, Donnell GN. Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis 1990;13:802-18.
    11. Walter J, Collins J, Leonard J, et al. Recommendations for the management of galactosaemia. Archives of Disease in Childhood 1999;80:93-96.
    12. Tang M, Siddiqi A, Witt B, et al. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) - deficient mouse model. Eur J Hum Genet 2014;22:1172-9.
    13. Anand KV, Mohamed Jaabir MS, Thomas PA, et al. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int 2012;12:741-50.
    14. WANG Z, LU C-r, SONG J-z. Physiologic and Biochemical Changes of Mimetic Aging Induced by D-galactose in Rats [J]. Chinese Journal of Laboratory Animal Science 2003;4:014.
    15. Ho S, Liu J, Wu R. Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology 2003;4.
    16. Yi ZJ, Fu YR, Li M, et al. Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Exp Gerontol 2009;44:760-5.
    17. Lu J, Zheng Y-l, Luo L, et al. Quercetin reverses d-galactose induced neurotoxicity in mouse brain. Behavioural Brain Research 2006;171:251-260.
    18. Huang C-C, Chiang W-D, Huang W-C, et al. Hepatoprotective Effects of Swimming Exercise against D-Galactose-Induced Senescence Rat Model. Evidence-Based Complementary and Alternative Medicine 2013;2013:9.
    19. Long J, Wang X, Gao H, et al. D-galactose toxicity in mice is associated with mitochondrial dysfunction: protecting effects of mitochondrial nutrient R-alpha-lipoic acid. Biogerontology 2007;8:373-81.
    20. Zhang ZF, Fan SH, Zheng YL, et al. Troxerutin protects the mouse liver against oxidative stress-mediated injury induced by D-galactose. J Agric Food Chem 2009;57:7731-6.
    21. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004;55:373-99.
    22. Jadeja RN, Devkar RV, Nammi S. Oxidative Stress in Liver Diseases: Pathogenesis, Prevention, and Therapeutics. Oxid Med Cell Longev 2017;2017:8341286.
    23. Li S, Tan HY, Wang N, et al. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 2015;16:26087-124.
    24. Sakaguchi S, Takahashi S, Sasaki T, et al. Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet 2011;26:30-46.
    25. Cichoz-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 2014;20:8082-91.
    26. Wu D, Cederbaum AI. Oxidative stress and alcoholic liver disease. Semin Liver Dis 2009;29:141-54.
    27. Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 2011;36:78-86.
    28. Kortsalioudaki C, Taylor RM, Cheeseman P, et al. Safety and efficacy of N-acetylcysteine in children with non-acetaminophen-induced acute liver failure. Liver Transpl 2008;14:25-30.
    29. Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 2010;51:246-54.
    30. Galicia-Moreno M, Favari L, Muriel P. Antifibrotic and antioxidant effects of N-acetylcysteine in an experimental cholestatic model. Eur J Gastroenterol Hepatol 2012;24:179-85.
    31. Bavarsad Shahripour R, Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain and Behavior 2014;4:108-122.
    32. Squires RH, Dhawan A, Alonso E, et al. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology 2013;57:1542-9.
    33. Haber CA, Lam TK, Yu Z, et al. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 2003;285:E744-53.
    34. Ikeda S, Yazaki M, Takei Y, et al. Type II (adult onset) citrullinaemia: clinical pictures and the therapeutic effect of liver transplantation. J Neurol Neurosurg Psychiatry 2001;71:663-70.
    35. Lai KY, Ng WY, Osburga Chan PK, et al. High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Ann Intern Med 2010;152:687-8.
    36. Millar AB, Pavia D, Agnew JE, et al. Effect of oral N-acetylcysteine on mucus clearance. Br J Dis Chest 1985;79:262-6.
    37. Nehru B, Kanwar SS. Modulation by N-acetylcysteine of lead-induced alterations in rat brain: reduced glutathione levels and morphology. Toxicol Mech Methods 2007;17:289-93.
    38. Reddy PS, Rani GP, Sainath SB, et al. Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. J Trace Elem Med Biol 2011;25:247-53.
    39. Ghosn MG, Mashiatulla M, Syed SH, et al. Permeation of human plasma lipoproteins in human carotid endarterectomy tissues: measurement by optical coherence tomography. J Lipid Res 2011;52:1429-34.
    40. Chen HL, Wang CH, Kuo YW, et al. Antioxidative and hepatoprotective effects of fructo-oligosaccharide in d-galactose-treated Balb/cJ mice. Br J Nutr 2011;105:805-9.
    41. Zhen YZ, Lin YJ, Li KJ, et al. Effects of rhein lysinate on D-galactose-induced aging mice. Exp Ther Med 2016;11:303-308.
    42. Ahangarpour A, Oroojan AA, Badavi M. Exendin-4 protects mice from D-galactose-induced hepatic and pancreatic dysfunction. Pathobiol Aging Age Relat Dis 2018;8:1418593.
    43. Chen P, Chen F, Zhou B. Antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid in liver and brain of rats treated by D-galactose. Scientific Reports 2018;8:1465.
    44. Aguer C, Gambarotta D, Mailloux RJ, et al. Galactose Enhances Oxidative Metabolism and Reveals Mitochondrial Dysfunction in Human Primary Muscle Cells. PLOS ONE 2011;6:e28536.
    45. Kase ET, Nikolić N, Bakke SS, et al. Remodeling of Oxidative Energy Metabolism by Galactose Improves Glucose Handling and Metabolic Switching in Human Skeletal Muscle Cells. PLOS ONE 2013;8:e59972.
    46. Qiang X, Xu L, Zhang M, et al. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress. Biochem Biophys Res Commun 2016;472:603-9.
    47. Fang R, Zhu X, Zhu Y, et al. Miltefosine Suppresses Hepatic Steatosis by Activating AMPK Signal Pathway. PLoS One 2016;11:e0163667.
    48. Castano D, Larequi E, Belza I, et al. Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. J Hepatol 2014;60:1017-25.
    49. Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011;13:376-388.
    50. Yun YR, Kim JH, Kim JH, et al. Protective effects of gomisin N against hepatic steatosis through AMPK activation. Biochem Biophys Res Commun 2017;482:1095-1101.
    51. Smith BK, Marcinko K, Desjardins EM, et al. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab 2016;311:E730-e740.
    52. Baumgardner JN, Shankar K, Hennings L, et al. N-acetylcysteine attenuates progression of liver pathology in a rat model of nonalcoholic steatohepatitis. J Nutr 2008;138:1872-9.
    53. Khoshbaten M, Aliasgarzadeh A, Masnadi K, et al. N-acetylcysteine improves liver function in patients with non-alcoholic Fatty liver disease. Hepat Mon 2010;10:12-6.
    54. Pamuk GE, Sonsuz A. N-acetylcysteine in the treatment of non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2003;18:1220-1.
    55. Sun Y, Pu L-Y, Lu L, et al. N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury. World Journal of Gastroenterology : WJG 2014;20:15289-15298.
    56. Dott W, Mistry P, Wright J, et al. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol 2014;2:224-33.
    57. Ren X, Chen L, Xie J, et al. Resveratrol Ameliorates Mitochondrial Elongation via Drp1/Parkin/PINK1 Signaling in Senescent-Like Cardiomyocytes. Oxidative Medicine and Cellular Longevity 2017;2017:20.
    58. Domenis R, Bisetto E, Rossi D, et al. Glucose-modulated mitochondria adaptation in tumor cells: a focus on ATP synthase and inhibitor Factor 1. Int J Mol Sci 2012;13:1933-50.

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE