簡易檢索 / 詳目顯示

研究生: 張智雄
Chang, Chih-Hsiung
論文名稱: 台灣東北部宜蘭仁澤-土場地熱區褶皺和破裂面組構造型態及其演化時序
Structural Mode and Development Sequence of Fracture Sets of Geothermal Area in Jentse-Tuchang, Ilan, Northeastern Taiwan
指導教授: 楊耿明
Yang, Kenn-Ming
共同指導教授: 謝秉志
Hsieh, Bieng-Zih
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 103
中文關鍵詞: 廬山層褶皺劈理節理剪切破裂斷層構造演化地熱構造
外文關鍵詞: Lushan formation, Fold, Cleavage, Joint, Shear fracture, Fault, Structural development, Geothermal structure
相關次數: 點閱:100下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的地熱系統分為火山型及非火山型兩種,其中,宜蘭仁澤-土場地區地熱系統屬於非火山型;發達的斷層與岩層裂縫作為地表天水滲流及地下水流通管道,加上地下高溫岩體作為熱源,使其富有再生能源開採價值。該地區大地構造由碰撞造山進入弧陸碰撞-弧後張裂轉換帶,經過多期變形產生複雜構造,而斷層及破裂帶的類型及走向與區域構造息息相關,因此建立區域地質構造模型對於地熱資源開發相當重要。過去尚無前人針對此區域進行中視尺度地質構造演化研究,且鑽井資料無法提供破裂之種類及方向。本研究進行仁澤-土場地區地表地質調查,於野外量測岩層的層面、劈理、以及破裂面之位態,記錄溪谷沿線岩性變化以及破裂面種類,建立本區域的地質構造模型,並根據不同構造之間的截切關係,判斷其發育順序,以探討區域構造演化及其在地熱系統扮演之角色。
    經過調查發現當地層面位態為東北-西南走向、高傾角,岩性為板岩及變質砂岩,兩者比例多變。大多數露頭所見劈理面與層面平行,少數夾低角度。此外,在多處劈理面上可觀察到與劈理走向近乎平行之擦痕。節理在兩種岩性的岩層皆存在,根據傾角大小分為兩個類型,剪切破裂則根據滑移方向分為四個類型。藉由伴隨斷層產生之次要雁形破裂型態、斷層剪裂帶岩體旋轉方向,得知斷層滑移方向與斷層面走向近乎垂直。由於斷層面上所記錄擦痕之走向與斷層面走向接近平行,表示此斷層曾經產生多期不同方向的滑移。
    研究結果顯示本區域至少經過四期構造活動。第一期在岩層尚未變質時發生,於砂岩內部形成兩組約夾70度角的節理;第二期為受到西北-東南向擠壓,形成一系列緊密褶皺,並產生平行層面之劈理;在岩層抬升過程,變形行為由塑性轉為脆性,以形成斷層泥之斷層作用為代表,且形成西北-東南向、平行主應力方向之節理以及東北-西南向剪切破裂,為第三期變形。此後仁澤-土場地區造山運動逐漸式微,區域應力場逐漸改變,岩層受左移剪力作用,產生數個小型斷層,以及沿舊有劈理及斷層等力學弱面產生近平行走向之滑移,遂產生與弱面走向平行之擦痕,為第四期活動。

    In Taiwan, there are few locations being identified as potential area for geothermal energy development, which can be grouped into two types: volcanic-related and non-volcanic-related. Jentse-Tuchang geothermal area is categorized as one of the latter type. Fractures and faults in rock mass underground serve as fair fluid conduit, and the heat remaining in metamorphic rock is good source of energy. To find appropriate sites for geothermal wells, it is important to realize the orientation and distribution, also development sequence, of those ruptures. This study investigates outcrops along the Tienkuerh and Towang rivers, describes lithology distribution and structure mode, and constructs a regional geological structural model with CPC geothermal well data. The rock formation in the study area is a part of the Lushan formation. Fieldwork results show that the rock formation in study area consists of slate and metamorphic sandstone. Bedding and cleavage are almost parallel, which strike NE-SW. Fractures are divided into joints and shear fractures by characteristics of fracture surfaces. There are several faults, two of them outcrop in both rivers, while the others are only found in single river. Striations on bedding, cleavage and fracture surfaces indicate that structural kinematics of the last stage are strike-slip. By analyzing the cross-cutting relationship and comparing structural mode with tectonic events, there are four stages of structural activities in this region. First, joints in sandstone were formed before metamorphism took place. When the rock formation was buried and compressed during the most recent orogeny, folding, metamorphism and cleavage developed simultaneously. When the orogenic belt started to uplift subsequently, deformation behavior of rock turned from ductile into brittle one, and fractures and faults with fault gouge started to develop. With the change of regional stress field, orogeny came to the final stage, and the rock formation was imposed with sinistral stress, forming near horizontal striations consequently.

    中文摘要 I 英文摘要 III 致謝 VI 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 前言 1 第二章 前人研究 3 2-1. 岩石地層單元 3 2-2. 構造地質 4 2-3. 地熱地質 7 第三章 研究方法 17 3-1. 破裂面分類 17 3-2. 斷層判釋 18 3-3. 岩層潛移判釋 18 3-4. 赤平投影圖 19 3-5. 三維地質模型 20 第四章 研究結果 26 4-1. 岩性分布 26 4-2. 層面與劈理 34 4-3. 褶皺構造 42 4-4. 斷層帶 48 4-5. 剪切破裂與節理 64 4-6. 擦痕分析 74 4-7. 三維地質模型 76 第五章 討論 79 5-1. 區域地質架構探討 79 5-2. 前期構造對破裂面發育之影響 85 5-3. 破裂面演化時序 85 5-4. 地熱地質概述 90 第六章 結論 91 參考文獻 93 附錄 100

    何春蓀(1975)臺灣地質概論,中華民國經濟部,163頁。
    吳永助(1976)清水土場地熱區及其外圍之地質,礦業技術,第14卷,第12期,484-489頁。
    宋聖榮,劉聰桂,吳逸民,陳洲生,羅偉,葉恩肇,張竝瑜、龔源成(2013)宜蘭清水地熱能源研究:探勘技術平台的建立與深層地熱,行政院國家科學委員會專題研究計畫期末報告,84頁。
    林啟文(1998)臺灣東北部板岩帶與片岩帶之構造特性與構造演化,國立臺灣大學地質學研究所博士論文,173頁。
    林啟文,林偉雄(1995a)臺灣地質圖說明書第十五號-三星圖幅,經濟部中央地質調查所,56頁。
    林啟文,林偉雄(1995b)臺灣東北部蘭陽溪中下游地質構造研究,經濟部中央地質調查所彙刊,第10號,23-49頁。
    林啟文,楊昭男(1999)臺灣東北部板岩帶與片岩帶之斷塊構造,經濟部中央地質調查所彙刊,第12號,39-62頁。
    林詩婷,李孟綸,鄧屬予(2019)宜蘭梵梵溫泉地質背景與其地熱含義,經濟部中央地質調查所彙刊,第32號,1-20號。
    陳文山(2016)臺灣地質概論,中華民國地質學會,204頁。
    傅式齊,賴光胤,楊志成,吳偉智,陳冠志,黃啟倫(2018)陽明山及宜蘭土場-仁澤地區地熱潛能綜合評估。中油公司107年度研究報告,89頁。
    曾長生(1978)宜蘭縣清水及土場區地質及地熱產狀,台灣石油地質,第15號,11-23頁。
    黃旭燦,莊恭周(1986)清水地熱區岩石與熱水蝕變礦物之研究,中國石油公司探採研究中心七十五年度研究報告,53頁。
    黃信樺(2007)台灣東北地區的地震構造:由碰撞末期轉變為隱沒拉張之構造特性,國立臺灣大學理學院地質科學研究所碩士論文,110頁。
    黃姝琳,賴光胤,黃緯誠,陳炳誠,廖明威,廖啟岳(2019)宜蘭仁澤-土場地熱區三維地質構造,2019臺灣地球科學聯合學術研討會壁報展示。
    黃緯誠,林章凱,陳思婷,陳炳誠(2019)宜蘭仁澤土場地熱區地表地質調查與探井資料對比,2019臺灣地球科學聯合學術研討會壁報展示。
    黃緯誠,陳思婷,楊國威,廖明威,廖啟岳(2020)宜蘭仁澤土場地熱區地表地質調查新進度及成果,2020臺灣地球科學聯合學術研討會壁報展示。
    劉佳玫(2011)台灣造山帶二氧化矽地表熱流分布及其隱示,國立臺灣大學地質科學研究所博士論文,138頁。
    鄧屬予,宋聖榮,葉恩肇,林殿順,劉佳玫,蔡宜伶(2013)從大地構造看台灣地熱潛能,西太平洋地質科學,第13卷,1-38頁。
    鄧屬予,林詩婷,李孟綸,簡翊展,蔡宜伶(2018)四稜砂岩裂縫性質及其地熱含義-以牛鬥橋南岸露頭為例,經濟部中央地質調查所特刊,第33號,57-76頁。
    盧建中,羅偉,劉佳玫(2011)宜蘭清水地熱區之地質構造,西太平洋地質科學,第11卷,49-64頁。
    羅佳明,翁孟嘉,吳政賢,董雅婷(2015)板岩順向坡之重力變形特性,中華技術,第108號,30-45頁。
    Angelier, J., Chang, T.-Y., Hu, J.-C., Chang, C.-P., Siame, L., Lee, J.-C., Deffontaines, Benoît., Chu, Hao-Tsu., Lu, C.-Y. (2009). Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics, 466(3-4), 356-376.
    Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., Scibek, J. (2013). Fault zone hydrogeology. Earth-Science Reviews, 127, 171-192.
    Caine, J. S., Evans, J. P., Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025-1028.
    Chang, L.-S. (1962). Some planktonic foraminifera from the Suo and Urai Groups of Taiwan and their stratigraphic significance. Proceedings of the Geological Society of China, 5, 127-133.
    Chang, L.-S. (1974). A Biostratigraphic Study of The So-Called Slate Formation in Taiwan Based on Smaller Foraminifera. IV. Northernmost Part of The Central Range. Proceedings of the Geological Society of China, 17, 85-93.
    Chang, P.-Y., Lo, W., Song, S.-R., Ho, K.-R., Wu, C.-S., Chen, C.-S., Lai, Y.-C., Chen, H.-F., Lu, H.-Y. (2014). Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model. Geothermics, 50, 91-100.
    Chen, B.-C., Perdana, T., Kuo, L.-W. (2021). Fluid flow and fault-related subsurface fractures in slate and metasandstone formations: A case study of the Jentse Geothermal Area, Taiwan. Geothermics, 89, 101986
    Chen, C. T., Chan, Y. C., Beyssac, O., Lu, C. Y., Chen, Y. G., Malavieille, J., Kidder, Steven B., Sun, H. C. (2019). Thermal History of the Northern Taiwanese Slate Belt and Implications for Wedge Growth During the Neogene Arc‐Continent Collision. Tectonics, 38(9), 3335-3350.
    Chigira, M. (1992). Long-term gravitational deformation of rocks by mass rock creep. Engineering Geology, 32(3), 157-184.
    Crespi, J. M., Chan, Y.-C., Swaim, M. S. (1996). Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24(3), 247-250.
    Doblas, M. (1998). Slickenside kinematic indicators. Tectonophysics, 295(1-2), 187-197.
    Faulkner, D. R., Rutter, E. H. (2001). Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology, 29(6), 503-506.
    Fisher, D. M., Lu, C. Y., Chu, H. T. (2002). Taiwan Slate Belt: Insights into the ductile interior of an arc-continent collision. Special Paper of the Geological Society of America, 358, 93-106.
    Fleuty, M. (1964). The description of folds. Proceedings of the Geologists' Association, 75(4), 461-492.
    Fossen, H. (2016). Structural geology, Cambridge university press, 510.
    Gholami, R., Rasouli, V. (2014). Mechanical and Elastic Properties of Transversely Isotropic Slate. Rock Mechanics and Rock Engineering, 47(5), 1763-1773.
    Hou, C.-S., Hu, J.-C., Ching, K.-E., Chen, Y.-G., Chen, C.-L., Cheng, L.-W., Tang, C.-L., Huang, S.-H., Lo, C.-H. (2009). The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics, 466(3-4), 344-355.
    Hsiao, P., Chiang, S. (1979). Geology and geothermal system of the Chingshui-Tuchang geothermal area, Ilan, Taiwan. Petrol. Geol. Taiwan, 16, 205-213.
    Hsieh, S. (1963). Lithofacies study of the Miocene Talu Shale in the Miaoli-Hsinchu region, Taiwan, Petrol. Geol. Taiwan, 2, 121-136.
    Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18.
    Letouzey, J., & Kimura, M. (1986). The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 125(1-3), 209-230.
    Li, Z., Xu, G., Dai, Y., Zhao, X., & Fu, Y. (2021). Effects of foliation on deformation and failure mechanism of silty slates. International Journal of Rock Mechanics and Mining Sciences, 141.
    Lisle, R. J., Brabham, P., & Barnes, J. W. (2011). Basic geological mapping (5 ed.), John Wiley & Sons, 217.
    Liu, C.-M., Chiang, H.-T., Kuo, C.-H., Song, S.-R., Tsai, Y.-W. (2015). Integrating geothermometer and high resolution thermometer to characterize the geothermal characteristics of Ilan Plain, Taiwan. Paper presented at the 40th Workshop on Geothermal Reservoir Engineering.
    Liu, K.-K., Yui, T.-F., Shieh, Y.-N., Chiang, S.-C., Chen, L.-H., Hu, J.-Y. (1990). Hydrogen and oxygen isotopic compositions of meteoric and thermal waters from the Chingshui geothermal area, northeastern Taiwan. Proceedings of the Geological Society of China, 33, 143-165.
    Lu, C. Y., Sun, L. J., Lee, J. C., Liou, Y. S., Liou, T. S. (1989). The shear structures in the Miocene Lushan Formation of the Suao area, eastern Taiwan. Proceedings of the Geological Society of China, 32, 121-137.
    Lu, Y.-C., Song, S.-R., Wang, P.-L., Wu, C.-C., Mii, H.-S., MacDonald, J., Shen, C.-C., John, C. M. (2017). Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry. Journal of Asian Earth Sciences, 149, 124-133.
    Morley, C. K. (1995). Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. Geological Society, London, Special Publications, 80(1), 1-32.
    Price, N. J. (1966). Fault and joint development: in brittle and semi-brittle rock: Elsevier, 176
    Ragan, D. M. (2009). Structural Geology: An Introduction to Geometrical Techniques (4 ed.), Cambridge university press, 602.
    Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952.
    Tillman, K. S., Byrne, T. B. (1995). Kinematic analysis of the Taiwan Slate Belt. Tectonics, 14(2), 322-341.
    Weinberger, R., Eyal, Y., Mortimer, N. (2010). Formation of systematic joints in metamorphic rocks due to release of residual elastic strain energy, Otago Schist, New Zealand. Journal of Structural Geology, 32(3), 288-305.
    Weng, M.-C., Chang, C.-Y., Jeng, F.-S., Li, H.-H. (2020). Evaluating the stability of anti-dip slate slope using an innovative failure criterion for foliation. Engineering Geology, 275, 105737.

    下載圖示 校內:2023-10-15公開
    校外:2023-10-15公開
    QR CODE