簡易檢索 / 詳目顯示

研究生: 張南屏
Chang, Nan-Ping
論文名稱: 以分子動力學研究石墨烯和可調式奈米碳管的機械性質
The study on mechanical properties of graphene and adjustable nanotubes by molecular dynamics simulation
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 奈米碳管分子動力學快速傅立葉轉換振動分析
外文關鍵詞: carbon nanotubes, molecular dynamics, fast Fourier transform, vibration analysis
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分子動力學研究石墨烯帶的楊氏係數及破壞應力與螺旋性和寬度尺寸的關係,研究結果發現,扶手椅型與鋸齒型石墨烯帶之楊氏係數皆有明顯的尺寸效應,但趨勢相反,且隨著寬度增加趨近於一個值;扶手椅型石墨烯帶破壞應力在寬度大於4.6nm時無明顯尺寸效應,在寬度小於4.6nm時有明顯的上升;鋸齒型則是沒有明顯尺寸效應,主要與邊界原子排列型態有關。扶手椅型石墨烯帶破裂線與自由邊界夾角約60°,鋸齒型破裂線則與自由邊界夾90°。當石墨烯帶在受外部均勻應變下,內部的原子間變形會有應變不均勻的情況,觀察破裂時的鍵長以及鍵角變化,發現破裂的產生與鍵長是否達到一臨界值有相當大的關係,當石墨烯帶內部的原子間鍵長達1.83Å左右時會開始產生破壞,但破裂的起始位置則與瞬間的原子動能分布有關。
    另外本研究以分子動力學結合振動分析方法,研究石墨烯和可調式奈米碳管之共振行為,藉由快速傅立葉轉換處理分子模擬中輸出之數據進行分析。主要著重於初始狀態對石墨烯片頻率的影響以及不同組合的可調式碳管頻率。結果發現石墨烯片頻率會受初始模態位移的大小所影響,故以施加初始模態取得頻率時要注意所施位移的大小;而不同組合之可調式奈米碳管頻率會有所不同,內外管的間距在2.03~3.39Å時,將巨觀連體力學的提摩仙可樑振動理論加入修正長度可以預測碳管右端頻率。
    關鍵字:奈米碳管、分子動力學、快速傅立葉轉換、振動分析

    In this study, molecular dynamics simulation was employed to investigate the size and chirality effects on Young's modulus and failure stress of graphene sheet. From the results, it was found that Young's moduli of both armchair and zigzag graphene sheets showed obvious size dependence but with opposite trend. The failure stress of armchair graphene sheet possessed size effect for width less than 4.6nm, but the failure stress of zigzag one did not show obvious size effect. The failure grew along a broken line about 60° (90°) with free boundary for armchair (zigzag) graphene. It was observed that the internal atomic deformation was not uniform due to the discrete atomic configuration even though the applied external strain was uniform. It was noted that there existed a critical bond length of 1.83Å beyond which the graphene sheet would start to break under tensile strain. However, the starting failure point would depend upon the atomic kinetic energy.
    Moreover, the resonance behaviors of graphene and adjustable double-walled carbon nanotubes (DWCNTs) were studied using molecular dynamics combined vibration analysis. The temporal information from molecular simulation was analyzed using fast Fourier transform. We focused on the influence of the initial modal displacement on the resonance frequency of the graphene sheet and investigated how different geometry condition would affect the frequency of the adjustable DWCNTs. It was found that the magnitude of the initial modal displacement would alter the resonance frequency of the graphene sheet. Hence, we should pay some attention to the initial modal displacement in determining the vibrational behavior of nanostructures. It was also observed that the resonance frequencies of the adjustable DWCNTs could be reasonably predicted by Timoshenko beam theory with properly selected material parameter s and corrected length.

    Keywords: carbon nanotubes, molecular dynamics, fast Fourier transform, vibration analysis

    摘要 I ABSTRACT III 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 2 1.2.1 石墨烯之文獻回顧 3 1.2.2 可調式奈米碳管之文獻回顧 4 1.3 本文架構 6 第二章 分子動力學理論與振動分析方法 10 2.1 基本理論與假設 10 2.2 系綜觀念 11 2.3 分子作用力與勢能函數 11 2.3.1 作用力 12 2.3.2 勢能函數 13 2.4 原子級應力 18 2.5 週期性邊界條件與最小映像法則 19 2.5.1 週期性邊界條件 19 2.5.2 最小映像法則 20 2.6 初始條件設定 22 2.7 運動方程式 23 2.8 截斷半徑法與VERLET表列法 25 2.9 本文使用勢能函數 27 2.10 系統平衡 28 2.11 訊號分析 28 第三章 石墨烯 41 3.1 石墨烯模型 41 3.1.1石墨烯帶 41 3.1.2四邊固定石墨烯片 42 3.2 模擬流程與分析方法 42 3.2.1石墨烯帶 42 3.2.2 四邊固定石墨烯 44 3.3石墨帶模擬結果 45 3.3.1收斂性測試 45 3.3.2尺寸效應 47 3.3.3斷裂機制的探討 48 3.4 四邊固定石墨烯模擬結果 51 3.4.1初始模態與振幅對四邊固定石墨烯頻率之影響 51 3.4.2理論推導四邊固定石墨烯模態及頻率 53 第四章 可調式奈米碳管 77 4.1 模型 77 4.2 模擬流程 78 4.2.1模擬平衡流程 78 4.2.2頻率分析方法 78 4.3 可調式奈米碳管結果 79 4.3.1 碳管結果分析 80 4.3.2 碳管結果分析與理論之比較 81 第五章 結論與未來展望 96 5.1總結 96 5.1.1石墨烯總結 96 5.1.2可調式奈米碳管總結 97 5.2未來展望 98 5.2.1奈米石墨片未來工作 98 5.2.2可調式奈米碳管 98 參考文獻 99 A.提摩-仙可樑理論[13] 102 圖目錄 圖1-1 單層石墨片震盪器示意圖 7 圖1-2 (a)可調諧振器示意圖 (b)在TEM下觀察兩種不同伸縮長度碳管分別為225 MHz和192.7 MHz 8 圖1-3 (a)接受器示意圖 (b)TEM下觀察單層碳管接受訊號情形,上為關閉,下為接收時 9 圖2-1 二體勢能之原子間交互作用示意圖 33 圖2-2 凡得瓦爾力之勢能關係 33 圖2-3 多體勢能之原子交互作用示意圖 34 圖2-4 Tersoff原子作用示意圖 34 圖2-5(a) 晶胞設定情形 35 圖2-5(b) 週期性邊界條件之示意圖 35 圖2-5(c) 週期性邊界條件之示意圖 36 圖2-6(a) 最小映像法則示意圖 36 圖2-6(b) 最小映像法則示意圖 37 圖2-6(c) 最小映像法則示意圖 37 圖2-6(d) 週期性邊界與最小映像法則之關係 38 圖2-7 截斷半徑示意圖 38 圖2-8 Verlet鄰近表列法示意圖 39 圖2-9 Verlet表列示意圖 39 圖2-10 一個鐘受到敲擊後自由震盪之振動行為展開示意圖[32] 40 圖3-1石墨烯帶模型圖,(a)扶手椅型及(b)鋸齒型 58 圖3-2 石墨烯帶捲曲示意圖(x為拉伸方向) 59 圖3-3 兩片固定的石墨片夾取欲拉伸石墨片(a)上視圖(b)側視圖 59 圖3-4 長4.68nm、寬4.66nm扶手椅型石墨帶,加石墨片與不加石墨片應力比較圖 60 圖3-5 在石墨烯片上分別施加不同模態的初始位移圖,(a)(1,1)、(b) (2,2)及(c) (3,3)模態 60 圖3-6不同週期性長度石墨帶拉伸三次之應力應變圖,分別為(a)扶手椅型及(b)鋸齒型 61 圖3-7不同螺旋性石墨帶之週期性長度與破壞應力的關係圖,分別為(a)扶手椅型及(b)鋸齒型 62 圖3-8 扶手椅型石墨帶在應變 38.5%時隨模擬時間變化的原子圖, 64 圖3-9 鋸齒型石墨帶在應變 28.5%時隨模擬時間變化的原子圖, 66 圖3-10不同寬度石墨烯帶拉伸三次應力應變圖,分別為(a)扶手椅型及(b)鋸齒型 67 圖3-11 不同螺旋性石墨烯帶的楊氏係數與寬度的關係圖 68 圖3-12不同螺旋性之石墨帶破壞應力與寬度的關係圖,分別為(a)扶手椅型及(b)鋸齒型 69 圖3-13 不同螺旋性之石墨烯帶內之鍵長鍵角示意圖,虛線為選用單位晶格,分別為(a)扶手型及(b)鋸齒型 70 圖3-14不同螺旋性之石墨烯帶內之鍵角示意圖,分別為(a)扶手型及(b)鋸齒型 71 圖3-15不同螺旋性之石墨烯帶內之鍵長示意圖,分別為(a)扶手型及(b)鋸齒型 72 圖3-16 長4.68nm、寬4.66nm扶手椅型石墨帶,在應變38.5%下第308步時的(a)原子溫度及(b)勢能分布圖 73 圖3-17 長4.66nm、寬4.66nm鋸齒型石墨帶,在應變28.5%下第495步時的(a)原子溫度及(b)勢能分布圖 74 圖3-18 四邊固定石墨片自然靜置之頻譜圖 75 圖3-19 給予初始振幅3Å的第一模態位移所得之頻譜圖 75 圖3-20 石墨烯片(1,1)模態的 (a)理論圖(b)3D響應圖 76 圖4-1石墨片六角結構 83 圖4-2 碳管模型圖 83 圖4-3 不同外層碳管位置之模型圖,LI為10nm,內層碳管右端露出長度LR分別為(a)2 nm、(b)5 nm及(c)8 nm 84 圖4-4 奈米碳管沿軸向位置正規化加總示意圖 84 圖4-5 LO=1 nm,LR=2 nm,LI=7 nm之3D頻譜響應圖 85 圖4-6 LO=1 nm,LR=2 nm,LI=7 nm之右端第一模態對照圖 85 圖4-7 (5,5)內管與不同外管組合對應之(a)右端及(b)左端頻率圖(LI=7nm,LO=1nm) 86 圖4-8 (7,7)內管與不同外管組合對應之(a)右端及(b)左端頻率圖 87 圖4-9 (5,5)+(10,10)碳管對應不同LO、LR之(a)右端及(b)左端頻率圖 88 圖4-10 (5,5)+(10,10)碳管與不同LO、LR之(a)右端及(b)左端頻率圖(LI=10 nm) 89 圖4-11 LO=3nm,LR=2nm,LI=10nm碳管橫向振動響應圖 90 圖4-12 LO=3nm,LR=2nm,LI=10nm碳管橫向振動響應圖 90 圖4-13 LO=3nm,LR=2nm,LI=10nm碳管橫向振動響應圖 91 圖4-14 (5,5)內管與不同外管組合對應之(a)右端及(b)左端頻率圖(LI=7nm,LO=1nm) 92 圖4-15 (7,7)內管與不同外管組合對應之(a)右端及(b)左端頻率圖 93 圖4-16 (5,5)+(10,10)碳管對應不同LO、LR之(a)右端及(b)左端頻率圖 94 圖4-17 (5,5)+(10,10)碳管與不同LO、LR之(a)右端及(b)左端頻率圖(LI=10 nm) 95 表目錄 表2-1 Gear 預測修正法之修正參數 31 表2-2 碳Tersoff勢能參數表 31 表2-3 碳Lennard-Jones勢能參數表 32 表3-1收斂性測試採用之石墨片模型(單位:nm) 55 表3-2採用不同寬度之石墨片模型以測試尺寸效應(單位:nm) 55 表3-3(a) 扶手椅型石墨烯帶內平均鍵長(Å) 56 表3-3 (b) 鋸齒型石墨烯帶內平均鍵長(Å) 56 表3-4 各模態不同振幅共振頻率與理論值比較表(單位:Trad/s) 56 表3-5初始條件對(1,1)、(2,2)及(3,3)模態頻率的影響表(單位:Trad/s) 57

    [1] Y. Son, M. L. Cohen and S. G. Louie, “Energy Gaps in Graphene Nanoribbons,” Physical Review Letters, Vol. 97, pp. 216803, 2006.
    [2] Z. Xu, “Graphene Nano-Ribbons under Tension,” Journal of Computational and Theoretical Nanoscience, Vol. 6, pp. 625-628, 2009.
    [3] H. Bu, Y. Chen, M. Zou, H. Yi, K. Bi and Z. Ni, “Atomistic Simulations of Mechanical Properties of Graphene Nanoribbons,” Physics Letters A, Vol. 373, pp. 3359-3362, 2009.
    [4] Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi and Y. Chen, “Anisotropic Mechanical Properties of Graphene Sheets from Molecular Dynamics,” Physica B, Vol. 405, pp.1301-1306, 2010.
    [5] J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead and P. L. McEuen, “Electromechanical Resonators from Graphene Sheets,” Science, Vol. 315, pp. 490-493, 2007.
    [6] A. Sakhaee-pour, M. T. Ahmadian and R. Naghdabadi, “Vibrational Analysis of Single-Layered Graphene Sheets,” Nanotechnology, Vol. 19, pp. 2085702, 2008.
    [7] J. R. Mianroodi, S. A. Niaki, R. Naghdabadi and M. Asghari, “ Nonlinear Membrane Model for Large Amplitude Vibration of Single Layer Graphene Sheets,” Nanotechnology, Vol. 22, pp.305703, 2011.
    [8] K. Iyakutti, V.J. Surya, K. Emelda and Y. Kawazoe, “ Simulation of Ripples in Single Layer Graphene Sheets and Study of Their Vibrational and Elastic Properties,” Computational Materials Science, Vol. 51, pp. 96-102, 2012.
    [9] J. Cumings and A. Zettl, “Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes,” Science, Vol. 289, pp. 602-604, 2000..
    [10] Q. Zheng and Q. Jiang, “Multiwalled Carbon Nanotubes as Gigahertz Oscillators,” Physical Review Letters, Vol. 88, pp. 045503, 2002.
    [11] K. Jensen, C. Girit, W. Mickelson and A. Zettl, “Tunable Nanoresonators Constructed from Telescoping Nanotubes,” Physical Review Letters, Vol.96, No. 215503, 2006.
    [12] K. Jensen, J. Weldon, H. Garcia and A. Zettl, “Nanotube Radio,” Nano Letters, Vol. 7, pp.3508-3511, 2007.
    [13] J. W. Kang, Y. G. Choi, Y. Kim, Q. Jiang, O. K. Kwon and H. J. Hwang, “The Frequency of Cantilevered Double-Wall Carbon Nanotube Resonators as a Function of Outer Wall Length,” Journal of Physics-Condensed Matter, Vol. 21, pp. 385301, 2009.
    [14] J. W. Kang, K. R. Byun, O. K. Kwon, Y. G. Choi and H. J. Hwang, “Gigahertz Frequency Tuner Based on a Telescoping Double-Walled Carbon Nanotube: Molecular Dynamics Simulations,” Molecular Simulation, Vol. 36, pp.418-424, 2010.
    [15]C. M. Wang, Y. Y. Zhang and X. Q. He, "Vibration of Nonlocal Timoshenko Beams," Nanotechnology, Vol. 18, pp. 105401, 2007.
    [16] J.-C. Hsu, R.-P. Chang, and W.-J. Chang, "Resonance Frequency of Chiral Single-Walled Carbon Nanotubes using Timoshenko Beam Theory," Physics Letters A, Vol. 372, pp. 2757-2759, 2008.
    [17] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Properties. IV. the Equation of Hydrodynamics,” Journal of Chemical Physics, Vol. 18, pp. 817-823, 1950.
    [18] R. J. Arsenault and J. R. Beeler, Computer Simulation in Material Science, Asm International, USA, 1988.
    [19] F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill, pp. 48-49, 1985.
    [20] C. L. Tien and J. H. Lienhard, Statistical Thermo Dynamics, MeiYa, pp. 211-233, 1971.
    [21] J. M. Haile, Molecular Dynamics Simulation, John Wiley and Sons, New York, 1997.
    [22] C. Goze, P. Bernier and A. Rubio, “Elastic Properties of C and BxCyNz Composite Nanotubes,” Physical Review Letters, Vol. 80, pp. 4502-4505, 1998.
    [23] G. C. Maitland and M. Rigby, Intermolecular Forces, their Origin and Determination, Oxford University Press, London, 1987.
    [24] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, 1997.
    [25] 朱訓鵬,國立成功大學機械工程研究所博士論文,2002.
    [26] J. E. Lennard-Jones, “The Determination of Molecular Fields II. from the Equation of State of A Gas,” Proceedings of the Royal Society, Vol. 106A, pp. 441, 1924.
    [27] J. Tersoff, “New Empirical Model for the Structural Properties of Silicon,” Physical Review Letters, Vol. 56, pp. 632-635, 1986.
    [28] J. Tersoff, “New Empirical Approach for the Structure and Energy of Covalent Systems,” Physical Review B, Vol. 37, pp. 6991-7000, 1988.
    [29] J. Tersoff, “Empirical Interatomic Potential for Carbon with Application to Amorphous Carbon,” Physical Review B, Vol. 38, pp. 9902-9905, 1988.
    [30] N. Miyazaki and Y. Shiozaki, “Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method,” The Japan Society of Mechanical Engineers, Vol. 39, pp. 606-612, 1996.
    [31] J. Cooley and J. Tukey, “An Algorithm for the Machine Computation of the Complex Fourier Series,” Mathematics of Computation, Vol. 19, pp.297-301, 1965.
    [32] Bruel and Kjaer, “Structural Testing Part2 : Modal Analysis and Simulation,” pp.5, 1988.
    [33] W. Zhao, F. Wu, H. Wu and G. Chen, “Preparation of Colloidal Dispersions of Graphene Sheets in Organic
    Solvents by Using Ball Milling,” Journal of Nanomaterials, Vol. 2010, pp. 528235, pp. 1-5, 2010.
    [34]C. W. Fan, J. H. Huang and C. Hwu, “Mechanical Properties of Single-walled Carbon Nanotubes - A Finite Element Approach,” Vol. 33-37, pp.937-942, 2008.

    下載圖示 校內:2018-02-08公開
    校外:2018-02-08公開
    QR CODE