簡易檢索 / 詳目顯示

研究生: 黃翊芳
Huang, I-Fang
論文名稱: 銅摻雜氧化銦奈米線自我催化生長及光學性質研究
Self-catalytic growth and optical properties of Cu-doped In2O3 nanowires
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 銅摻雜氧化銦奈米線水氣光學性質
外文關鍵詞: Cu-doping In2O3NWs, water vapor, optical properties
相關次數: 點閱:45下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用熱碳還原法在溫度650-850℃的鍍銅矽基板上,分別於濕氬氣及氬氣中生長銅摻雜氧化銦奈米線及氧化銦八面體。在氬氣中通入水氣,可使反應物蒸氣產生低過飽現象而利於生成銅摻雜氧化銦奈米線。銅摻雜氧化銦奈米線是遵循自催化氣液固(Vapor-Liquid-Solid)機制生長。當通入的水氣量增加,銅摻雜氧化銦奈米線的生長密度下降,而銅的摻雜量則上升。銅的摻雜在氧化銦能隙中產生新的能階,造成光激發光譜、陰極螢光光譜紅移現象。

    The Cu-doped In2O3 nanowires (NWs) and In2O3 octahedrons were synthesized on the Cu-coated Si substrates at 650-850˚C in wet Ar and Ar, respectively, by carbothermal reduction of In2O3 powder. The introduction of water vapor into flowing Ar could yield a low supersaturation of reactant vapors and thus favored the growth of Cu-doped In2O3 NWs.The growth ofCu-doped In2O3 NWs followed the self-catalytic vapor-liquid-solid process. With increasing the volume of water, the amount of Cu-doped In2O3 NWs decreased, while that of Cu dopants in them increased. The introduction of Cu dopants yielded an energy level in the bandgap of In2O3, resulting in a redshift in both cathodoluminescence and photoluminescence emissions.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 第一章前言 1 1.1 奈米材料簡介 1 1.1.1 起源與發展 1 1.1.2 奈米材料 2 1.2 奈米表面效應 3 1.3 量子侷限效應 4 1.4一維奈米材料 5 第二章文獻回顧 8 2.1 奈米線製程技術及相關研究 8 2.1.1 熱蒸鍍法(thermal evaporation) 8 2.1.2 化學氣相沉積法(chemical vapor deposition) 9 2.1.3 熱碳還原法(carbothermal reduction) 11 2.1.4 水熱法(Solvothermal) 12 2.1.5 雷射蒸鍍法(laser ablation) 13 2.1.6 模板輔助法(template-assisted) 13 2.1.7 溶膠-凝膠法(sol-gel) 14 2.2 奈米線生長機制及相關文獻 15 2.2.1 Vapor-Liquid-Solid(VLS) 15 2.2.2 Self-catalyzed VLS 16 2.2.3 Vapor-Solid(VS) 18 2.2.4 Vapor-Solid-Solid(VSS) 18 2.2.5 Oxide-Assisted Growth(OAG) 19 2.2.6 Solution-Liquid-Solid(SLS、SFLS、SFSS) 19 2.3 In2O3文獻回顧 20 2.3.1 氧化銦結構及特性 20 2.3.1.1 晶體結構 20 2.3.1.2氧化銦各方向生長速率 21 2.3.1.3光學性質 21 2.3.1.4導電性質 22 2.3.1.5載子的生成 23 2.3.2 氧化銦材料之應用 23 2.3.2.1 太陽能電池 23 2.3.2.2平面顯示器 24 2.3.2.3氣體感測器 25 2.3.2.4熱反射器 25 2.3.2.5有機發光二極體 26 2.4 研究動機 26 第三章實驗步驟與分析儀器 28 3.1 基板的清洗與製備 28 3.1.1 Si基板的清洗與製備 28 3.1.2 鍍Cu基板的清洗與製備 28 3.2 實驗設備及流程 29 3.2.1 Cu摻雜In2O3奈米線試片製備 29 3.3 TEM試片製備 31 3.3.1 Cu摻雜In2O3奈米線TEM試片製備 31 3.4 實驗儀器原理與實驗分析 31 3.4.1 掃瞄式電子顯微鏡 31 3.4.2 低掠角X光繞射儀 33 3.4.3 穿透式電子顯微鏡 34 3.4.4 X光能量散佈分析儀 35 3.4.5 光激發光譜(PL)量測 36 3.4.6 陰極發光光譜(CL)量測 38 第四章結果與討論 41 4.1 在氬氣中通入水對Cu摻雜In2O3奈米線生長之影響 41 4.2 Cu摻雜In2O3奈米線之生長機制 43 4.3 溫度對Cu摻雜In2O3奈米線生長之影響 41 4.4 Cu摻雜In2O3奈米線之光學性質 46 4.4.1 光激發光譜(PL) 46 4.4.2 陰極螢光光譜(CL) 48 第五章結語 50 參考文獻 52 附錄1 86 附錄2 87 圖目錄 圖2.1(a) 熱蒸鍍法合成氧化銦奈米線SEM影像與EDS分析 60 圖2.1(b) 熱蒸鍍法合成氧化銦奈米線外部包裹一層非晶質層 60 圖2.2 solvothermal方法合成氧化銦奈米棒 61 圖2.3 多孔性的氧化鋁薄膜(AAMs)TEM圖 61 圖2.4 AAMs孔洞生成之氧化銦奈米線 62 圖2.5 Sol-Gel方法合成氧化銦奈米棒 62 圖2.6 Self-catalyzed VLS成長機製成長機制 63 圖2.7 TEM即時觀察Self-catalyzed VLS成長鍺奈米線過程 63 圖2.8 VLS機制和Solution-Liquid-Solid機制的比較圖 64 圖2.9 Solution-Liquid-Solid機制生長InN奈米纖維 64 圖2.10 Cubic Bixbyite結構 65 圖2.11 銦離子和氧離子排列示意圖 65 圖3.1 水平式管狀高溫爐裝置示意圖 66 圖3.2 CL產生之示意圖 66 圖3.3 (a)CL偵測裝置與訊號處理系統及(b)半橢圓形反射鏡以增加CL收集之示意圖 67 圖3.4 CL分析技術在各種材料領域中常見的應用 67 圖4.1 粉末溫度1100℃,乾氬氣流量50sccm,持溫2小時,下游鍍Cu基板溫度650 ℃-850℃產物之(a)SEM影像(b)XRD分析 68 圖4.2 粉末溫度1100℃,通水量7c.c.,氬氣流量50sccm,持溫2小時,下游鍍Cu基板溫度650℃-850℃產物之(a)SEM影像(b)XRD分析 68 圖4.3 粉末溫度1100℃,濕氬氣流量50sccm,持溫2小時,(a)通水量3c.c.(b)通水量5c.c.(c)通水量7c.c.下游鍍Cu基板於溫度650℃-750℃產物之SEM影像 69 圖4.4 鍍Cu基板上通水生長Cu摻雜In2O3奈米線之(a)TEM影像、繞射圖像(b)奈米線頭部EDS能譜分析圖(c)奈米線EDS能譜分析圖 70 圖4.5 取650℃-750℃(a)純In2O3奈米線與通水量(b)3c.c.(c)5c.c.及(d)7c.c.的Cu摻雜In2O3奈米線的XRD數據經過矽基板校正後分析比較圖 71 圖4.6 經矽基板校正後650℃-750℃(a)純In2O3奈米線與通水量(b)3c.c.(c)5c.c.及(d)7c.c.的Cu摻雜In2O3奈米線的XRD(222)峰比較圖 71 圖4.7 Cu摻雜In2O3奈米線不同通水量TEM/EDS之分析結果 72 圖4.8 通水在鍍Cu基板上生長Cu摻雜In2O3奈米線之TEM影像及繞射圖 72 圖4.9 通水量7c.c.時TEM影像及各部位EDS能譜 73.74 圖4.10 通水量7c.c.時TEM影像及各部位EDS能譜 75.76 圖4.11 通水量7c.c.時TEM影像及各部位EDS能譜 77.78 圖4.12 Cu-In二元相圖 79 圖4.13 (a)較低溫650℃-750℃及(b)較高溫750℃-850℃之通水量7c.c.的Cu摻雜In2O3奈米線SEM圖 79 圖4.14 取(a)純In2O3奈米線與通水量7c.c.時(b) 650℃-750℃(c) 750℃- 850℃及Cu摻雜In2O3奈米線的XRD數據經過矽基板校正後分析比較 80 圖4.15 經矽基板校正後(a)純In2O3奈米線與通水量7c.c.時(b)650℃- 750℃(c) 750℃-850℃之Cu摻雜 In2O3奈米線XRD(222)峰比較圖 80 圖4.16 溫度650℃-750℃(a)純In2O3奈米線及水量(b)3c.c.(c)5c.c.(d)7c.c.的Cu摻雜In2O3奈米線試片之PL光譜比較 81 圖4.17 通水量5c.c.時(a) 純In2O3奈米線及溫度(b) 650℃-750℃(c) 750℃-850℃的Cu 摻雜In2O3 奈米線試片的PL光譜比較 81 圖4.18 Cu摻雜In2O3奈米線發光機制示意圖 82 圖4.19 純In2O3奈米線CL光譜圖 83 圖4.20 (a)純In2O3奈米線及650-750℃水量(b)3c.c.(c)5c.c.(d)7c.c.的Cu摻雜In2O3奈米線試片之CL光譜比較圖 83 圖4.21 (a)純In2O3奈米線及650-750℃水量(b)3c.c.(c)5c.c.(d)7c.c.的Cu摻雜In2O3奈米線試片之SEM/CL發光對照圖 84 圖4.22 (a)純In2O3奈米線及通水量7c.c.的(b) 650℃-750℃(c) 750℃- 850℃的Cu摻雜In2O3 奈米線試片的CL光譜比較 85

    1. R. Feynman, 「Plenty of Room at the Bottom」, APS Annual Meeting (1959).
    2. Ryogo Kubo, J. Phys. Soc. Jpn. 17,975 (1962).
    3. G. Binnig, H. Rohrer,C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57(1982).
    4. G. Binnig, C. F. Quate,C. Gerber, Phys. Rev. Lett. 56, 930(1986).
    5. 李世光, 「奈米科學與技術導論」, 經濟部工業局(2002).
    6. B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, and T. S. Camerson, J. Am. Chem.Soc. 125, 2195(2003).
    7. P. Ball, and L. Garwin, Nature 355, 761(1992).
    8. B.J. van, Wees, H. van Houten, C. W. Beenakker, J. G. Williamson, L. P.Kouwenhoven, D. van der Marel, andC. T. Foxon, Phys. Rev. Lett. 60, 848(1988).
    9. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F.Frost, D.G. Hasko, D. C. Peacock, D. Ritchie, and G. A. C. Jones, J Phys. C21, L209(1988).
    10. C. W. J. Beenakker and. H. van Houten, Solid State Physics44, 1 (1991)
    11. Y. Wang, N. Herron, J. Phys. Chem.95, 525 (1991).
    12. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang,Nanotechnology15,596 (2004).
    13. S. Iijima, Nature354, 56 (1991).
    14. W. B. Choi, D. S. Chung, Appl. Phys. Lett. 75, 3129 (1999).
    15. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Liebe, Science289, 94 (2000).
    16. Canham, L. T. Appl. Phys. Lett. 57, 1046 (1990).
    17. A. G. Gullis and L. T. Canham, Nature353, 335 (1991).
    18. D. D. D. Ma, C. S. Lee, F. C. K Au, S. Y. Tong and S. T. Lee, Science299, 1874 (2003).
    19. Y. Cui, X. Duan, J. Hu, and C. M. Lieber. J. Phys. Chem. B104,5213(2001).
    20. Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science293, 1289 (2001).
    21. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science294, 1313 (2001).
    22. Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber, Science302, 1377 (2003).
    23. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature409, 66 (2001).
    24. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Harahuchi, M. Kohuchi, and H. Kakibayash, J. Appl. Phys. 77(2), 447 (1995).
    25. G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei, and Y. Q. Mao, J. Mater. Res.15, 347 (2000).
    26. Y. Li, Appl. Phys. Lett.76(15) , 2011 (2000).
    27. C. L. Cheung,J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett.76, 3136 (2000).
    28. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett.81, 757 (2002)
    29. X. C. Wu, J. M. Hong,Z. J. Han, Y. R. Tao, Chem. Phys. Lett.373,28 ( 2003 )
    30. K. C. Kam, F. L. Deepak, A. K. Cheetham, C. N. R. Rao, Chem. Phys. Lett. 397329( 2004 )
    31. 馮榮豐、陳錫添, 「奈米工程概論」,全華科技 (2004).
    32. Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des. 5, 1617 ( 2005 )
    33. X. S. Peng, Y. W. Wang, J. Zhang,X. F. Wang,L. X. Zhao, G. W.Meng, L. D. Zhang, Appl. Phys. A-Mater.74,437 ( 2002 )
    34. T. Gao, T. Wang, J. Cryst. Growth290,660 ( 2006 ).
    35. M. C. Johnson, S. Aloni, D. E. McCready, E. D. Bourret-Courchesne, Cryst. Growth Des.6, 1936 ( 2006 ).
    36. J. Zhang, X. Qing, F. Jiang, and Z. Dai, Chemical Physics Letters. 371, 311 (2003).
    37. Y. Li, Y. Bando, D. Golberg,Adv.Mater.15, 581(2003).
    38. J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An, G. C. Yi, Chem. Phys. Lett.384, 246 (2004).
    39. 盧永坤,「奈米科技概論」,滄海書局(2005).
    40. 莊達人, 「VLSI 製造技術」, 高立圖書有限公司(1996).
    41. T. Gao, T. Wang, J. Cryst. Growth290, 660 ( 2006 ).
    42. J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy20, 695 (1995).
    43. C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000).
    44. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003).
    45. G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal.24, 137 ( 2003).
    46. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J . Mater. Chem.14, 440 (2004).
    47. A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc.24, 3227 (2004).
    48. M. Johnsson, Solid State Ionics 172, 365 (2004).
    49. S. Wade, T. Suzuki, and T. Noma, J. Ceram. Soc. Jpn. 12, 103 (1995).
    50. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater.11, 1307(1999).
    51. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir.14, 3160(1998).
    52. D. Seo, J. K. Lee, and H. J. Kim, Cryst. Growth. 229, 428 (2001).
    53. Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, and Q. K. Xue, Chem. Phys. Lett.365, 427(2002).
    54. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995).
    55. J. Xu, Y. Chen, J. Shen,Materials Lett.62, 1363 (2008).
    56. C. Chen, D. Chen, X. Jiao, and C. Wang, Chem. Commun.4632 (2006).
    57. C. Li, D. Zhang, S. Han, X. Liu, T. Tang, Adv. Mater.15, 143 (2003).
    58. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc.123, 11500 (2001).
    59. G. Gundiah, A. Govindaraj and C. N. R. Rao, ... Zn and Cd chalcogenides, Israel J. Chem.41, 23 (2001).
    60. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, and M. Nath, Appl. Phys. Lett.78, 1853 (2001).
    61. N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett.343, 1 (2001).
    62. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett.2, 427 (2002).
    63. T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater.15, 3518 (2003).
    64. K.M. Ryan, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, J. Am. Chem. Soc.125, 6284 (2003).
    65. Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett.4, 2337 (2004).
    66. M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang,Appl. Phys. Lett. 79 ,839 (2001).
    67. M. Zheng, L. Zhang, X. Zhang, J. Zhang, and Guanghai, Chemical Physics Letters 334, 298 (2001).
    68. Z. X. Cheng, X. B. Dong, Q. Y. Pan , J. C. Zhang , X. W. Dong, Mat. Lett.60, 3137(2006).
    69. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, and M. Nath, Appl. Phys. Lett.78, 1853 (2001).
    70. C.N.R. Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem.31, 5 (2003).
    71. Y. Wu, P. Yang,J. Am. Chem. Soc.123, 3165 (2001).
    72. Q. Wan, Z. T. Song, S. L. Feng, and T. H.Wang, Appl. Phys. Lett.85, 4759 (2004).
    73. D. Calestani, M. Zha, A. Zappettini,L. Lazzarini, L. Zanotti,Chem.Phys. Lett. 445, 251( 2007).
    74. C. Yan, T. Zhang, and P. S. Lee,Cryst. Growth. Des. 8, 3144(2008).
    75. S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, MRS Bull.24, 36(1999).
    76. T.J.Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science270, 1791 (1995).
    77. F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, and W. E. Buhro, Inorg .Chem.45, 7511 (2006).
    78. S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed.39, 1470 (2000).
    79. Guanbi Chen, Lei Wang, Xia Sheng, Hongjuan Liu, Xiaodong Pi, Yuanyuan Zhang, Dongsheng Li, Deren Yang, Nanoscale Res.Lett.898, 5(2010).
    80. X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003).
    81. X. Li, M. W. Wanlass, T. A. Gessert, K. A. Emery, and T. J. Coutts,Appl. Phys. Lett.54, 2674(1989).
    82. A. G. U. Perera, H. C. Liu, and M. H. Francombe, Semiconductor Optical and Electro-Optical Devices,Academic Press, London, UK (2000).
    83. C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang,Adv.Mater.13, 1330(2001).
    84. C. Grivas, S. Mailis, R. W. Eason, E. Tzamali, and N. A. Vainos, Appl. Phys. A74,457(2002).
    85. J. Tamaki,C. Naruo, Y. Yamamoto, and M. Matsuoka, Sensors ActuatorsB 83, 190(2002).
    86. M. Liess, Thin Solid Films 410, 183 (2002).
    87. I. Hamberg, and C. G. Granqvist, Appl. Phys. Lett.44, 721(1984).
    88. Y. Hu, J. Li, Vacuum Techn Appl. 2,36 (2000).
    89. Wyckoff, and W. G. Ralph, 「Crystal Structure」, Vol. 2 Chap. V, P.4(1986).
    90. K. Hanamoto, M. Sasaki, K. Miyatani, C. Kaito, H. Miki, and Y. Nakayama,Nuclear Instruments and Methods in Physics Research B 173, 287 (2001)
    91. A. Kompany, H. A. Rahnamaye Aliabad, S. M. Hosseini, J. Baedi,phys. stat. sol. (b) 244(2) 619 (2007)
    92. Y. Li, Y. Bando, D. Golberg,Adv.Mater.15, 581(2003).
    93. Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des.5, 1617 ( 2005 ).
    94. C. H. Liang,G.W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, Adv. Mater.13, 1330(2001).
    95. 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料179 (2001).
    96. 賴明雄、溫志中,工業材料179145 (2001).
    97. P. Kofstad, 「Nonstoichiometry ,Diffusion, and Electrical Conductivity in Binary Metal Oxides」,18(1972).
    98. T. Schuler, and M. A. Aegerter, Thin Solid Films351, 125 (1999).
    99. Z. Fan,Physics29(11),688 (2000).
    100. J. Miller Anthony, A. Hatton Ross, G. Y. Chen, and P. Silva S. Ravi,Appl. Phys. Lett. 90,023105(2007).
    101. 賴明雄、溫志中,工業材料179145 (2001).
    102. P. B. Weise, The Journal of Chemical Physics21(9), 1531 ( 1953).
    103. H. Windischmann, P. Mark, Journal of the electrochemical society126(4), 627( 1979).
    104. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. Lett.82, 112 (2003).
    105. J. Kong, 「Nanotube Molecular Wires as Chemical Sensors」 Science287, 622 (2000).
    106. M. Law, H. Kind, B. Messer, F. Kim, P. Yang,Angew. Chem. Int. Ed.41, 2405 (2002).
    107. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1613 (2003).
    108. M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V
    Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001).
    109. 廖建勳, 「有機半導體材料與元件」化工資訊月刊14(4) 58(2000).
    110. C. G. Granqvist, and A. Hultaker, Thin Solid Films411, 1(2002).
    111. T. Minami, Semicond. Sci. Technol.20, S35(2005).
    112. X. J. Huang, Y. K. Choi, Sens. and ActuatorsB122, 659(2007).
    113. S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, Nanotechnology16, 451(2005).
    114. Q.Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett.6, 2909(2006).
    115. C. L.Hsin, J. H. He, and L. J. Chen,Appl. Phys. Lett.88, 063111(2006).
    116. H. J. Chun, Y. S. Choi, S. Y. Bae, H. C. Choi, and J. Park,Appl. Phys. Lett. 85, 461(2004).
    117. L. Liu, T. Zhang, S. Li, L. Wang, and Y. Tian,Mater. Lett.63, 1975(2009).
    118. J. Wang, B. Zou, S. Ruan, J. Zhao, Q. Chen, and F. Wu,Materials Letters63, 1750(2009).
    119. Q. Wan, J. Huang, A. Lu, and J. Sun,J. Appl. Phys.106, 024312(2009).
    120. 汪建民等人, 「材料分析」, 中國材料科學學會 (1998).
    121. 郭正次、朝春光, 「奈米結構材料科學」, 全華科技, 93年4月, Chap 5.
    122. L. H. Cheng, L. Y. Zheng, G. R. Li, Q. R. Yin, and K. Jiang, Nanotechnology19 075605 (2008).
    123. S. Polarz, A. V. Orlov, F. Schüth, and A. H. Lu, Chem. Eur. J.13, 592 (2007).
    124. R.D. Shannon, Acta Cryst.A32, 751( 1976).
    125. Y. Hao, G. Meng, C. Ye, and L. Zhang, Crystal Growth & Design, 4, 1617-1621 (2005).
    126. N. Singh, T. Zhang, and P. S. Lee, Nanotechnology20, 195605 (2009).
    127. M. Kumar, V.N. Singh, B.R. Mehta, and J.P. Singh, Nanotechnology20, 235608 (2009).
    128. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett.4, 89. (1964).
    129. Y. Hao, G. Meng, Z. L. Wang, C. Ye, and L. Zhang, Nano Lett.6, 1650 (2006).
    130. X.P. Shen, H.J. Liu, X. Fan, Y. Jiang, J.M. Hong, Z. Xu, J. Cryst. Growth276,471(2005)..
    131. C. Y. Kuo, S. Y. Lu, T. Y. Wei, J. Cryst. Growth285,400(2005).
    132. G. Wang ,J. Park,D. Wexler,M.S. Park ,and J.H. Ahn,Inorganic Chemistry46,4778-4780 (2007).
    133. M. Mazzera, M. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti,
    Nanotechnology18, 355707(2007).
    134. J. Yang, C. Lin, Z. Wang, and J. Lin, Inorg. Chem.45 (22), 8973 (2006).
    135. M. S.Lee, W. C.Choi, E. K. Kim, C. K. Kim, S. K. Min, Thin Solid Films1, 279 (1996).
    136. G. Wang, J. Park, D. Wexler, M. S. Park, and J. H. Ahn,Inorg. Chem.46 (12), 4778 (2007).

    下載圖示 校內:2013-08-03公開
    校外:2013-08-03公開
    QR CODE