| 研究生: |
黃翊芳 Huang, I-Fang |
|---|---|
| 論文名稱: |
銅摻雜氧化銦奈米線自我催化生長及光學性質研究 Self-catalytic growth and optical properties of Cu-doped In2O3 nanowires |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 銅摻雜氧化銦奈米線 、水氣 、光學性質 |
| 外文關鍵詞: | Cu-doping In2O3NWs, water vapor, optical properties |
| 相關次數: | 點閱:45 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用熱碳還原法在溫度650-850℃的鍍銅矽基板上,分別於濕氬氣及氬氣中生長銅摻雜氧化銦奈米線及氧化銦八面體。在氬氣中通入水氣,可使反應物蒸氣產生低過飽現象而利於生成銅摻雜氧化銦奈米線。銅摻雜氧化銦奈米線是遵循自催化氣液固(Vapor-Liquid-Solid)機制生長。當通入的水氣量增加,銅摻雜氧化銦奈米線的生長密度下降,而銅的摻雜量則上升。銅的摻雜在氧化銦能隙中產生新的能階,造成光激發光譜、陰極螢光光譜紅移現象。
The Cu-doped In2O3 nanowires (NWs) and In2O3 octahedrons were synthesized on the Cu-coated Si substrates at 650-850˚C in wet Ar and Ar, respectively, by carbothermal reduction of In2O3 powder. The introduction of water vapor into flowing Ar could yield a low supersaturation of reactant vapors and thus favored the growth of Cu-doped In2O3 NWs.The growth ofCu-doped In2O3 NWs followed the self-catalytic vapor-liquid-solid process. With increasing the volume of water, the amount of Cu-doped In2O3 NWs decreased, while that of Cu dopants in them increased. The introduction of Cu dopants yielded an energy level in the bandgap of In2O3, resulting in a redshift in both cathodoluminescence and photoluminescence emissions.
1. R. Feynman, 「Plenty of Room at the Bottom」, APS Annual Meeting (1959).
2. Ryogo Kubo, J. Phys. Soc. Jpn. 17,975 (1962).
3. G. Binnig, H. Rohrer,C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57(1982).
4. G. Binnig, C. F. Quate,C. Gerber, Phys. Rev. Lett. 56, 930(1986).
5. 李世光, 「奈米科學與技術導論」, 經濟部工業局(2002).
6. B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, and T. S. Camerson, J. Am. Chem.Soc. 125, 2195(2003).
7. P. Ball, and L. Garwin, Nature 355, 761(1992).
8. B.J. van, Wees, H. van Houten, C. W. Beenakker, J. G. Williamson, L. P.Kouwenhoven, D. van der Marel, andC. T. Foxon, Phys. Rev. Lett. 60, 848(1988).
9. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F.Frost, D.G. Hasko, D. C. Peacock, D. Ritchie, and G. A. C. Jones, J Phys. C21, L209(1988).
10. C. W. J. Beenakker and. H. van Houten, Solid State Physics44, 1 (1991)
11. Y. Wang, N. Herron, J. Phys. Chem.95, 525 (1991).
12. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang,Nanotechnology15,596 (2004).
13. S. Iijima, Nature354, 56 (1991).
14. W. B. Choi, D. S. Chung, Appl. Phys. Lett. 75, 3129 (1999).
15. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Liebe, Science289, 94 (2000).
16. Canham, L. T. Appl. Phys. Lett. 57, 1046 (1990).
17. A. G. Gullis and L. T. Canham, Nature353, 335 (1991).
18. D. D. D. Ma, C. S. Lee, F. C. K Au, S. Y. Tong and S. T. Lee, Science299, 1874 (2003).
19. Y. Cui, X. Duan, J. Hu, and C. M. Lieber. J. Phys. Chem. B104,5213(2001).
20. Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science293, 1289 (2001).
21. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science294, 1313 (2001).
22. Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber, Science302, 1377 (2003).
23. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature409, 66 (2001).
24. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Harahuchi, M. Kohuchi, and H. Kakibayash, J. Appl. Phys. 77(2), 447 (1995).
25. G. S. Cheng, L. D. Zhang, S. H. Chen, Y. Li, L. Li, X. G. Zhu, Y. Zhu, G. T. Fei, and Y. Q. Mao, J. Mater. Res.15, 347 (2000).
26. Y. Li, Appl. Phys. Lett.76(15) , 2011 (2000).
27. C. L. Cheung,J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett.76, 3136 (2000).
28. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett.81, 757 (2002)
29. X. C. Wu, J. M. Hong,Z. J. Han, Y. R. Tao, Chem. Phys. Lett.373,28 ( 2003 )
30. K. C. Kam, F. L. Deepak, A. K. Cheetham, C. N. R. Rao, Chem. Phys. Lett. 397329( 2004 )
31. 馮榮豐、陳錫添, 「奈米工程概論」,全華科技 (2004).
32. Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des. 5, 1617 ( 2005 )
33. X. S. Peng, Y. W. Wang, J. Zhang,X. F. Wang,L. X. Zhao, G. W.Meng, L. D. Zhang, Appl. Phys. A-Mater.74,437 ( 2002 )
34. T. Gao, T. Wang, J. Cryst. Growth290,660 ( 2006 ).
35. M. C. Johnson, S. Aloni, D. E. McCready, E. D. Bourret-Courchesne, Cryst. Growth Des.6, 1936 ( 2006 ).
36. J. Zhang, X. Qing, F. Jiang, and Z. Dai, Chemical Physics Letters. 371, 311 (2003).
37. Y. Li, Y. Bando, D. Golberg,Adv.Mater.15, 581(2003).
38. J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An, G. C. Yi, Chem. Phys. Lett.384, 246 (2004).
39. 盧永坤,「奈米科技概論」,滄海書局(2005).
40. 莊達人, 「VLSI 製造技術」, 高立圖書有限公司(1996).
41. T. Gao, T. Wang, J. Cryst. Growth290, 660 ( 2006 ).
42. J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy20, 695 (1995).
43. C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000).
44. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003).
45. G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal.24, 137 ( 2003).
46. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J . Mater. Chem.14, 440 (2004).
47. A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc.24, 3227 (2004).
48. M. Johnsson, Solid State Ionics 172, 365 (2004).
49. S. Wade, T. Suzuki, and T. Noma, J. Ceram. Soc. Jpn. 12, 103 (1995).
50. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater.11, 1307(1999).
51. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir.14, 3160(1998).
52. D. Seo, J. K. Lee, and H. J. Kim, Cryst. Growth. 229, 428 (2001).
53. Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, and Q. K. Xue, Chem. Phys. Lett.365, 427(2002).
54. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995).
55. J. Xu, Y. Chen, J. Shen,Materials Lett.62, 1363 (2008).
56. C. Chen, D. Chen, X. Jiao, and C. Wang, Chem. Commun.4632 (2006).
57. C. Li, D. Zhang, S. Han, X. Liu, T. Tang, Adv. Mater.15, 143 (2003).
58. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc.123, 11500 (2001).
59. G. Gundiah, A. Govindaraj and C. N. R. Rao, ... Zn and Cd chalcogenides, Israel J. Chem.41, 23 (2001).
60. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, and M. Nath, Appl. Phys. Lett.78, 1853 (2001).
61. N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett.343, 1 (2001).
62. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett.2, 427 (2002).
63. T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater.15, 3518 (2003).
64. K.M. Ryan, D. Erts, H. Olin, M.A. Morris, and J.D. Holmes, J. Am. Chem. Soc.125, 6284 (2003).
65. Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett.4, 2337 (2004).
66. M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang,Appl. Phys. Lett. 79 ,839 (2001).
67. M. Zheng, L. Zhang, X. Zhang, J. Zhang, and Guanghai, Chemical Physics Letters 334, 298 (2001).
68. Z. X. Cheng, X. B. Dong, Q. Y. Pan , J. C. Zhang , X. W. Dong, Mat. Lett.60, 3137(2006).
69. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, and M. Nath, Appl. Phys. Lett.78, 1853 (2001).
70. C.N.R. Rao, F.L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem.31, 5 (2003).
71. Y. Wu, P. Yang,J. Am. Chem. Soc.123, 3165 (2001).
72. Q. Wan, Z. T. Song, S. L. Feng, and T. H.Wang, Appl. Phys. Lett.85, 4759 (2004).
73. D. Calestani, M. Zha, A. Zappettini,L. Lazzarini, L. Zanotti,Chem.Phys. Lett. 445, 251( 2007).
74. C. Yan, T. Zhang, and P. S. Lee,Cryst. Growth. Des. 8, 3144(2008).
75. S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, MRS Bull.24, 36(1999).
76. T.J.Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science270, 1791 (1995).
77. F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, and W. E. Buhro, Inorg .Chem.45, 7511 (2006).
78. S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, Angew. Chem. Int. Ed.39, 1470 (2000).
79. Guanbi Chen, Lei Wang, Xia Sheng, Hongjuan Liu, Xiaodong Pi, Yuanyuan Zhang, Dongsheng Li, Deren Yang, Nanoscale Res.Lett.898, 5(2010).
80. X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003).
81. X. Li, M. W. Wanlass, T. A. Gessert, K. A. Emery, and T. J. Coutts,Appl. Phys. Lett.54, 2674(1989).
82. A. G. U. Perera, H. C. Liu, and M. H. Francombe, Semiconductor Optical and Electro-Optical Devices,Academic Press, London, UK (2000).
83. C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang,Adv.Mater.13, 1330(2001).
84. C. Grivas, S. Mailis, R. W. Eason, E. Tzamali, and N. A. Vainos, Appl. Phys. A74,457(2002).
85. J. Tamaki,C. Naruo, Y. Yamamoto, and M. Matsuoka, Sensors ActuatorsB 83, 190(2002).
86. M. Liess, Thin Solid Films 410, 183 (2002).
87. I. Hamberg, and C. G. Granqvist, Appl. Phys. Lett.44, 721(1984).
88. Y. Hu, J. Li, Vacuum Techn Appl. 2,36 (2000).
89. Wyckoff, and W. G. Ralph, 「Crystal Structure」, Vol. 2 Chap. V, P.4(1986).
90. K. Hanamoto, M. Sasaki, K. Miyatani, C. Kaito, H. Miki, and Y. Nakayama,Nuclear Instruments and Methods in Physics Research B 173, 287 (2001)
91. A. Kompany, H. A. Rahnamaye Aliabad, S. M. Hosseini, J. Baedi,phys. stat. sol. (b) 244(2) 619 (2007)
92. Y. Li, Y. Bando, D. Golberg,Adv.Mater.15, 581(2003).
93. Y. F. Hao, G. Meng, C. Ye, L. Zhang, Cryst. Growth Des.5, 1617 ( 2005 ).
94. C. H. Liang,G.W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, Adv. Mater.13, 1330(2001).
95. 楊明輝,「金屬氧化物透明導電材料的基本原理」,工業材料179 (2001).
96. 賴明雄、溫志中,工業材料179145 (2001).
97. P. Kofstad, 「Nonstoichiometry ,Diffusion, and Electrical Conductivity in Binary Metal Oxides」,18(1972).
98. T. Schuler, and M. A. Aegerter, Thin Solid Films351, 125 (1999).
99. Z. Fan,Physics29(11),688 (2000).
100. J. Miller Anthony, A. Hatton Ross, G. Y. Chen, and P. Silva S. Ravi,Appl. Phys. Lett. 90,023105(2007).
101. 賴明雄、溫志中,工業材料179145 (2001).
102. P. B. Weise, The Journal of Chemical Physics21(9), 1531 ( 1953).
103. H. Windischmann, P. Mark, Journal of the electrochemical society126(4), 627( 1979).
104. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. Lett.82, 112 (2003).
105. J. Kong, 「Nanotube Molecular Wires as Chemical Sensors」 Science287, 622 (2000).
106. M. Law, H. Kind, B. Messer, F. Kim, P. Yang,Angew. Chem. Int. Ed.41, 2405 (2002).
107. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, Appl. Phys. Lett. 82, 1613 (2003).
108. M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V
Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001).
109. 廖建勳, 「有機半導體材料與元件」化工資訊月刊14(4) 58(2000).
110. C. G. Granqvist, and A. Hultaker, Thin Solid Films411, 1(2002).
111. T. Minami, Semicond. Sci. Technol.20, S35(2005).
112. X. J. Huang, Y. K. Choi, Sens. and ActuatorsB122, 659(2007).
113. S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, Nanotechnology16, 451(2005).
114. Q.Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, and W. Lu, Nano Lett.6, 2909(2006).
115. C. L.Hsin, J. H. He, and L. J. Chen,Appl. Phys. Lett.88, 063111(2006).
116. H. J. Chun, Y. S. Choi, S. Y. Bae, H. C. Choi, and J. Park,Appl. Phys. Lett. 85, 461(2004).
117. L. Liu, T. Zhang, S. Li, L. Wang, and Y. Tian,Mater. Lett.63, 1975(2009).
118. J. Wang, B. Zou, S. Ruan, J. Zhao, Q. Chen, and F. Wu,Materials Letters63, 1750(2009).
119. Q. Wan, J. Huang, A. Lu, and J. Sun,J. Appl. Phys.106, 024312(2009).
120. 汪建民等人, 「材料分析」, 中國材料科學學會 (1998).
121. 郭正次、朝春光, 「奈米結構材料科學」, 全華科技, 93年4月, Chap 5.
122. L. H. Cheng, L. Y. Zheng, G. R. Li, Q. R. Yin, and K. Jiang, Nanotechnology19 075605 (2008).
123. S. Polarz, A. V. Orlov, F. Schüth, and A. H. Lu, Chem. Eur. J.13, 592 (2007).
124. R.D. Shannon, Acta Cryst.A32, 751( 1976).
125. Y. Hao, G. Meng, C. Ye, and L. Zhang, Crystal Growth & Design, 4, 1617-1621 (2005).
126. N. Singh, T. Zhang, and P. S. Lee, Nanotechnology20, 195605 (2009).
127. M. Kumar, V.N. Singh, B.R. Mehta, and J.P. Singh, Nanotechnology20, 235608 (2009).
128. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett.4, 89. (1964).
129. Y. Hao, G. Meng, Z. L. Wang, C. Ye, and L. Zhang, Nano Lett.6, 1650 (2006).
130. X.P. Shen, H.J. Liu, X. Fan, Y. Jiang, J.M. Hong, Z. Xu, J. Cryst. Growth276,471(2005)..
131. C. Y. Kuo, S. Y. Lu, T. Y. Wei, J. Cryst. Growth285,400(2005).
132. G. Wang ,J. Park,D. Wexler,M.S. Park ,and J.H. Ahn,Inorganic Chemistry46,4778-4780 (2007).
133. M. Mazzera, M. Zha, D. Calestani, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti,
Nanotechnology18, 355707(2007).
134. J. Yang, C. Lin, Z. Wang, and J. Lin, Inorg. Chem.45 (22), 8973 (2006).
135. M. S.Lee, W. C.Choi, E. K. Kim, C. K. Kim, S. K. Min, Thin Solid Films1, 279 (1996).
136. G. Wang, J. Park, D. Wexler, M. S. Park, and J. H. Ahn,Inorg. Chem.46 (12), 4778 (2007).