簡易檢索 / 詳目顯示

研究生: 楊斯媛
Yang, Si-Yuan
論文名稱: 具不同長寬比矩形渾沌電滲微混合器之分析與最佳設計
Analysis and Optimal Design of Rectangular Chaotic Electroosmotic Micromixers with Different Aspect Ratios
指導教授: 黃世宏
Hwang, Shyh-Hong
吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 149
中文關鍵詞: 渾沌電滲流矩形微混合器誘捕區域李亞普諾夫指數法二階時延模型
外文關鍵詞: chaotic electroosmotic flow, rectangular micromixer, trapping area, Lyapunov exponent method, second-order plus time-delay model
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗室整合晶片設備需要高效率的微流體混合機制來完成指定工作,因此對於電滲微混合器的高效設計有極高需求,特別是易於生產製造的矩形微混合器。本論文旨在設計一種高效的矩形渾沌電滲微混合器,透過調整嵌入矩形管壁內電極條的電壓來形成合適的電滲流類型,並通過在兩種不同流動類型之間週期性切換來產生渾沌流,以實現快速的粒子混合。
    本研究首先針對微混合器內矩形區域的混合現象進行分析,並發現一些有用結果。其一,切換週期對混合速度有顯著影響,增加切換週期可以增大渾沌混合區域並減小非渾沌誘捕區域。當粒子出現在誘捕區域時,它們會進行週期性運動並失去混合功能。其二,龐加萊截面可以模擬混合器設計的空白區域,其存在會降低穩態混合占比,但可由增加寬邊流速來改善此占比。其三,出現在渾沌空白區域的粒子可能會以慢速運動至渾沌混合區域,然而出現在非渾沌空白區域的粒子會被困住而無法離開。本研究接著提出了李亞普諾夫指數法來彌補龐加萊截面模擬耗時的缺點,可以快速識別各個區域的粒子運動行為,並評估混合器設計對粒子初始位置的敏感性。此外,還開發了基於龐加萊截面的二階時延模型來計算混合效率,為微混合器的最佳設計提供了有力工具。
    最後,本研究針對1:1至4:1的四個整數長寬比,提出適用於渾沌混合器的多種對稱和非對稱電滲微渦流類型,並利用上述混合效率計算方法,透過選擇多個操作變數(切換週期、寬邊流速、渦流流動方向)來獲得最佳混合器設計。同時,鑑於長寬比常為非整數的實際情況,本研究進一步將四種整數長寬比的最佳設計延伸應用於長寬比介於1:1至4:1範圍內的微混合器。研究結果顯示,所設計的微混合器比現有的微混合器具有更廣泛的應用性和更佳性能。

    Lab-on-a-chip devices require highly efficient microfluidic mixing mechanisms to complete specified tasks. Hence, there is a high demand for efficient designs of electroosmotic micromixers, especially rectangular micromixers that are easy to manufacture. This thesis aims to design an efficient rectangular chaotic electroosmotic micromixer. It forms suitable electroosmotic flow patterns by adjusting the voltages of the electrode strips embedded in the rectangular wall, and generates chaotic flow for rapid particle mixing by periodically switching between two different flow patterns.
    This research first analyzes the mixing phenomena in the rectangular area within the micromixer and uncovers several useful results. First, the switching period has a significant impact on the mixing speed, and increasing the switching period can increase the chaotic mixing area and reduce the non-chaotic trapping area. When particles appear in the trapping area, they will undergo periodic motion and loss mixing capability. Second, the Poincaré sections can simulate the blank areas of the mixer design. Their existence will reduce the steady-state mixing percentage, but this percentage can be improved by increasing the wide-side flow rate. Third, particles that appear in a chaotic blank area may move to a chaotic mixing area at a slow speed, while particles that appear in a non-chaotic blank area will be trapped and unable to leave. This research then proposes the Lyapunov exponent method to remedy the time-consuming shortcoming of Poincaré section simulation, which can quickly identify the particle motion behavior in various areas and evaluate the sensitivity of the mixer design to the initial position of particles. In addition, a second-order plus time delay model based on the Poincaré sections is developed to calculate the mixing efficiency, which serves as a powerful tool for the optimal design of micromixers.
    Finally, for four integer aspect ratios from 1:1 to 4:1, this research proposes a variety of symmetric and asymmetric electroosmotic micro-vortex flow patterns suitable for chaotic mixers, and uses the aforementioned mixing efficiency calculation method to obtain the optimal mixer designs by selecting multiple operating variables (switching period, wide-side flow rate, vortex flow direction). At the same time, in view of the practical situation where the aspect ratio is often a non-integer, this research further extends the optimal designs for the four integer aspect ratios to micromixers with aspect ratios ranging from 1:1 to 4:1. It is shown that the proposed designed micromixers have wider applicability and better performance than available micromixers.

    摘要 I ABSTRACT II 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVIII 符號表 XXII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 章節與組織 4 第二章 渾沌電滲流理論 5 2.1 電雙層形成機制 5 2.2 電滲流形成機制 6 2.3 矩形微管道內電滲流的基本方程式 7 2.4 電滲流的數學模型推導及建立 9 2.5 矩形微管道的電滲流流動類型 12 2.5.1 單一渦流類型 12 2.5.2 對稱四渦流類型 12 2.5.3 非對稱四渦流類型 13 2.6 微管道邊界流速的收斂性 15 2.7 週期性切換流動類型引起渾沌混合 18 2.8 混合效率的分析 19 2.8.1 龐加萊截面(Poincare ́ Section) 19 2.8.2 盒計數法(Box Counting Method) 19 2.8.3 一階時延系統(First Order plus Time Delay) 20 2.8.4 李亞普諾夫指數 21 第三章 電滲微混合器的混合現象分析與混合效率計算 23 3.1 混合現象分析 23 3.1.1 渾沌電滲微混合器的產生 23 3.1.2 渾沌與非渾沌空白區域 38 3.1.3 李亞普諾夫指數分析渾沌現象 44 3.2 混合效率計算 47 3.2.1 誘捕區域占比 47 3.2.2 二階時延系統(Second Order plus Time Delay) 48 3.2.3 最大李亞普諾夫指數(Maximum Lyapunov Exponent) 50 第四章 整數長寬比矩形微混合器的電滲流流動類型選擇 52 4.1 正方形微混合器 53 4.1.1 對稱渦流類型 53 4.1.2 非對稱渦流類型 56 4.2 長寬比為2:1的矩形微混合器 66 4.2.1 對稱渦流類型 66 4.2.2 非對稱渦流類型 71 4.3 長寬比為3:1的矩形微混合器 78 4.3.1 對稱渦流類型 78 4.3.2 非對稱渦流類型 81 4.4 長寬比為4:1的矩形微混合器 86 4.4.1 對稱渦流類型 86 4.4.2 非對稱渦流類型 88 第五章 整數長寬比矩形渾沌電滲微混合器的最佳設計 93 5.1 正方形微混合器 93 5.2 長寬比為2:1的矩形微混合器 97 5.3 長寬比為3:1的矩形微混合器 101 5.4 長寬比為4:1的矩形微混合器 104 第六章 非整數長寬比矩形渾沌電滲微混合器的最佳設計 109 6.1 長寬比介於1:1至2:1之間的矩形微混合器 109 6.2 長寬比介於2:1至3:1之間的矩形微混合器 112 6.3 長寬比介於3:1至4:1之間的矩形微混合器 113 第七章 結論與未來展望 116 7.1 結論 116 7.2 未來展望 117 參考文獻 118 附錄A 針對展開式係數難收斂部分的求解 123

    [1] E. K. Sackmann, A. L. Fulton and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature, vol. 507, pp. 181-189, 2014.
    [2] C.Y. Lee, G.B. Lee, J.L. Lin, F.C. Huang and C.S. Liao, “Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification,” Journal of Micromechanics and Microengineering, vol. 15, no. 6, pp. 1215-1223, 2005.
    [3] A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han and C. T. Lim, “Microfluidics for cell separation,” Medical and Biological Engineering and Computing, vol. 48, no. 10, pp. 999-1014, 2010.
    [4] X. Wang, Z. Liu, Y. Cai, B. Wang and X. Luo, “A cost-effective serpentine micromixer utilizing ellipse curve,” Analytica Chimica Acta, vol. 1155, no. 22, pp.338¬-355, 2021.
    [5] R. E. Pawinanto, J. Yunas and A. M. Hashim, “Micropillar based active microfluidic mixer for the detection of glucose concentration,” Microelectronic Engineering, vol. 234, no. 15, 2020.
    [6] L. Chen, S. Lee, M. Lee, C. Lim, J. Choo, J. Y. Park, S. Lee, S. -W. Joo, K. -H. Lee and Y. -W. Choi, “DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes,” Biosensors and Bioelectronics, vol. 23, no. 12, pp. 1878-1882, 2008.
    [7] A. Pourabed, T. Younas, C. Liu, B. K. Shanbhag, L. He and T. Alan, “High throughput acoustic microfluidic mixer controls self-assembly of protein nanoparticles with tuneable sizes,” Journal of Colloid and Interface Science, vol. 585, pp. 229-236, 2021.
    [8] K. Ward and Z. H. Fan, “Mixing in microfluidic devices and enhancement methods,” Journal of Micromechanics and Microengineering, vol. 25, no. 9, 2020.
    [9] C. -Y. Lee, C. -L. Chang, Y. -N. Wang and L. -M. Fu, “Microfluidic mixing: a review,” International Journal of Molecular Sciences, vol. 12, no. 5, pp. 3263-3287, 2011.
    [10] C. -K. Chen and C. -C. Cho, “A combined active/passive scheme for enhancing the mixing efficiency of microfluidic devices,” Chemical Engineering Science, vol. 63, no. 12, pp. 3081-3087, 2008.
    [11] D. Gobby, P. Angeli and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers”, Journal of Micromechanics and Microengineering, vol. 11, no. 2, pp. 121-126, 2001.
    [12] V. Hessel, S. Hardt, H. Löwe and F. Schönfeld, “Laminar mixing in different interdigital micromixers: I. Experimental characterization,” AIChE Journal, vol. 49, no. 3, pp. 566-577, 2003.
    [13] D. Witkowski, W. Kubicki, J. A. Dziuban, D. Jašíková and A. Karczemska, “Micro-Particle Image Velocimetry for imaging flows in passive microfluidic mixers,” Metrology and Measurement Systems, vol. 25, no. 3, pp. 441-450, 2018.
    [14] F. Lince, D. L. Marchisio and A. A. Barresi, “A comparative study for nanoparticle production with passive mixers via solvent-displacement: Use of CFD models for optimization and design,” Chemical Engineering and Processing: Process Intensification, vol. 50, no. 4, pp. 356-368, 2011.
    [15] L. Wang, D. Liu, X. Wang and X. Han, “Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves,” Chemical Engineering Science, vol. 81, pp. 157-163, 2012.
    [16] B. Lee, M. Kim, S. Oh, D. B. Lee, S. -G. Lee, H. M. Kim, K. H. Kim, J. Song and C. -S. Lee, “Characterization of passive microfluidic mixer with a three-dimensional zig-zag channel for cryo-EM sampling,” vol. 281, no.5, 2023.
    [17] W. Jeon and C. B. Shin, “Design and simulation of passive mixing in microfluidic systems with geometric variations,” Chemical Engineering Journal, vol. 152, no.15, pp. 575-582, 2009.
    [18] S. J. Baik, J. Y. Cho, S. B. Choi and J. S. Lee, “Numerical investigation of the effects of geometric parameters on transverse motion with slanted-groove micro-mixers,” Journal of Mechanical Science and Technology, vol. 30, no. 19, pp.3729-3739, 2016.
    [19] H. J. Kim and A. Beskok, “Quantification of chaotic strength and mixing in a micro fluidic system,” Journal of Micromechanics and Microengineering, vol. 17, no. 11, pp. 2197-2210, 2007.
    [20] R. Peng and D. Li, “Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel,” Journal of Colloid and Interface Science, vol. 440, pp. 126-132, 2015.
    [21] S. H. Sadek and F. T. Pinho, “Electro-osmotic oscillatory flow of viscoelastic fluids in a microchannel,” Journal of Non-Newtonian Fluid Mechanics, vol. 266, pp. 46-58, 2019.
    [22] S. -M. Yang, F. Chen, D. Yin, H. Zhang, R. Yin, B. Zhang and W. Zhang, “Flow-free droplet-based platform for spiral-striated polymorphic structure of periodical crystalline agglomerates,” Microfluidics and Nanofluidics, vol. 22, pp. 114, 2018.
    [23] M. Parida and S. Padhy, “Electro-osmotic flow of a third-grade fluid past a channel having stretching walls,” Nonlinear Engineering, vol. 8, no. 1, pp. 56-64, 2019.
    [24] S. -J. Liu, S. -H. Hwang and H.-H. Wei, “Nonuniform electro-osmotic flow on charged strips and its use in particle trapping,” Langmuir, vol. 24, no. 23, pp. 13776-13789, 2008.
    [25] C. Sasmal, “Fluid viscoelasticity suppresses chaotic convection and mixing due to electrokinetic instability,” Physics of Fluids, vol. 34, no. 8, pp. 082011, 2022.
    [26] S. Xiong and X. Chen, “Numerical study of a three‐dimensional electroosmotic micromixer with Koch fractal curve structure,” Journal of Chemical Technology and Biotechnology, vol. 96, no. 7, pp. 1909-1917, 2021.
    [27] A. K. Bansal and G. K. Nhaichaniya, “Investigating the influence of induced charge and surface charge heterogeneity on electrokinetic micromixing: A comparative analysis,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023.
    [28] S. Qian and H. H. Bau, “Theoretical investigation of electro-osmotic flows and chaotic stirring in rectangular cavities,” Applied Mathematical Modelling, vol. 29, no. 8, pp. 726-753, 2005.
    [29] 呂柏賢, 電滲渾沌之形成機制與其對微粒子混合效率之影響, 成功大學化學工程學系學位論文, 成功大學, 2019.
    [30] 曾冠彰, 利用渾沌電滲流進行矩形混合器之最佳設計, 成功大學化學工程學系學位論文, 成功大學, 2021.
    [31] S. -J. Liu, H. -H. Wei and S. -H. Hwang, “Dynamic particle trapping, release, and sorting by microvortices on a substrate,” Physical Review E, vol. 82, no. 16, pp. 13776-13789, 2010.
    [32] H. Zhao and H.H. Bau, “Microfluidic chaotic stirrer utilizing induced-charge electroosmosis,” Physical Review E, vol. 75, no. 6, pp. 1-8, 2007.
    [33] C. Yang and D. Li, “Analysis of electrokinetic effects on the liquid flow in rectangular microchannels,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 143, pp. 339-353, 1998.
    [34] R. F. Probstein, “Physicochemical Hydrodynamics: An Introduction,” John Wiley and Sons, 1994.
    [35] Ó. Gústafsson, “Microchip Electrochromatography,” 2008.
    [36] 蔡秉宸, 快速收斂之電滲流解析解與其在微粒子混合之應用, 成功大學化學工程學系學位論文, 成功大學, 2015.
    [37] 林敏巧, 利用電滲微渦流進行粒子聚集之微流體控制系統, 成功大學化學工程學系學位論文, 成功大學, 2016.
    [38] C. W. Wei, T. H. Young and J. Y. Cheng, “Electroosmotic Mixing Induced by Non-Uniform Zeta Potential and Application for DNA Microarray in Microfluidic Channel,” Biomedical Engineering: Applications, Basis and Communications, vol. 17, no. 6, pp. 281-283, 2005.
    [39] R. C. Hilborn, “Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers,” 1994.
    [40] T. Mostefa, A. D. Eddine, N. T. Tayeb, S. Hossain, A. Rahman, B. Mohamed and K. -Y. Kim, “Kinematic properties of a twisted double planetary chaotic mixer: a three-dimensional numerical investigation,” Micromachines, vol. 13, no. 9, pp.1545 , 2022.
    [41] C. -C. Chang and R. -J. Yang, “Chaotic mixing in electro-osmotic flows driven by spatiotemporal surface charge modulation,” Physics of Fluids, vol. 21, 2009.
    [42] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317, 1985.
    [43] P. Nijkamp and A. Reggiani, “Spatial modelling and chaos theory,” Interaction, Evolution and Chaos in Space, pp. 119-163, 1992.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE