簡易檢索 / 詳目顯示

研究生: 龔鼎琮
Gong, Ding-Cong
論文名稱: 氣動式雙向微流體驅動系統之研究
An Investigation of Pneumatic Bidirectional Microfluid Driving System
指導教授: 潘大知
Pan, Dartzi
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 氣動式驅動系統微流體微流道
外文關鍵詞: Driving System, Pneumatic, Microchannel, Microfluid
相關次數: 點閱:99下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究探討各種氣動式微流體驅動系統。微流體指各種存在於微晶片管道內的流體,氣動式驅動方法指利用外接壓縮空氣通過特殊設計之流道而產生低壓或高壓,來驅動微流體的方法。該驅動裝置若只能產生吸力或只能產生斥力,則微流道之兩端都必須連接驅動裝置以進行雙向驅動,若該裝置能產生吸力也可產生斥力,則微流道只需在一端連接驅動裝置即可進行雙向驅動。本研究將以計算流體力學為分析工具,研讀元件設計的參數變化,提出新的改良設計;最後本研究將製作1mm寬深的微流道以及公分級的驅動元件,以實驗來驗証各種設計的可能性。

      This research studies the design of pneumatic driving systems for bidirectional flow control in microchannels. A pneumatic driving system uses an external air compressor as the power source. It induces a pressure difference across the microchannels by driving compressed air through specially designed air passages. The pressure difference provides either a suction force or an exclusion force to drive the microfluid in the channel. If the driving system is capable of generating only one kind of force, either suction or exclusion, then both ends of the microchannel must be connected to a driving unit in order to acquire bidirectional flow control. If the driving is capable of generating both kinds of force, then the microchannel requires only a single driving unit at one end for bidirectional flow control. The research uses computational fluid dynamics as a tool to examine the various geometric parameters of pneumatic driving systems. New designs are proposed based on the computational results. Finally, experiments are conducted on microchannels of 1 mm × 1 mm cross section to verify the validity of the new designs.

    目 錄 中文摘要 ……………………………………………I 英文摘要 ……………………………………………II 誌 謝 ……………………………………………III 目 錄 ……………………………………………IV 表 目 錄 ……………………………………………VII 圖 目 錄 ……………………………………………VIII 符號說明 ……………………………………………XIII 第一章 簡介 ...............................1 1.1 導論 ..................................1 1.2 機械式微幫浦 ..........................2 1.3 非機械式微幫浦 ........................4 1.4 氣動式驅動幫浦 ........................5 1.5 研究動機 ..............................6 第二章 CFD流場模擬工具 ....................8 2.1 統御方程式 ............................8 2.2 流場解子 ..............................8 2.3 Boundary Condition ....................10 2.4 網格建構 ..............................12 第三章 斥力驅動元件設計及分析 .............13 3.1 驅動系統設計概念 ......................13 3.2 「單端雙向」與「雙端雙向」驅動元件 ....13 3.3 斥力之元件設計 ........................14 3.4 流場參數無因化 ........................15 3.5 基本外型 ..............................16 3.6 台階向風面角度α及上下位置 ............16 3.7 台階對空氣流道之阻塞比β ..............17 3.8 Y型管開口角度γ .......................17 3.9 Y型管開口右端距台階之相對距離δ .......18 3.10 選擇設計參數 .........................18 3.11 雷諾數的影響 .........................19 第四章 斥力驅動元件實驗 ...................20 4.1 微流道製作 ............................20 4.2 密封 ..................................21 4.3 實驗平台 ..............................23 4.4 實驗方法 ..............................24 4.5 實驗結果 ..............................24 第五章 推斥力與吸力之驅動元件整合設計 .....26 5.1 前言 ..................................26 5.2 吸引元件與推斥力元件整合設計 ..........26 5.3 基本整合設計之實驗 ....................28 5.4 整合設計之變化 ........................29 第六章 結論 ...............................32 6.1 未來工作 ..............................33 參考文獻 ..................................34

    參考文獻
    [1]“MEMS 1999-Emerging Applications and Markets,” The System Planning Corporation, 1999.
    [2] Maseeh, F., Swiecki, N. F., and Finch, N., “Reducing MEMS product development and commercialization time,” The IntelliSense Corporation.
    [3] Nguyen, N. T., Huang, X., Chuan, T. K., “MEMS-Micropumps: A Review,” Transactions of the ASME Journal of Fluids Engineering, Vol. 124, No.2, June 2002, pp. 384-392.
    [4] Shoji, S., and Esashi, M., “Microflow devices and systems,” Journal of Micromechanics and Microengineering, Vol. 4, No. 4, December 1994, pp. 157-171.
    [5] Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., “Integrated micro-liquid dosing system,” Proc. IEEE-MEMS Workshop, February, 1993, pp. 254-259.
    [6] Zengerle, R., Geigel, W, Richter, A., Ulrich, Y., and Kliige, S., “Application of microdiaphragm pumps in microfluid systems,” Actuator, 1994.
    [7] Fuhr, G., Hagedorn, R., Muller, T., Benecke, W., and Wagner, B., “Pumping of water solution in microfabricated electrohydrodynamic systems,” Proc. IEEE-MEMS Workshop, 1992, pp.25-29.
    [8] Madou, M. J., Lee, L. J., Daunert, S., Lai, S., and Shih, C. H., “Desgin and Fabracation of CD-like Microfluidic Platforms for Diagnostics: Microfluidic Functions,” Biomedical Microdevices Vol.3, No.3, September 2001, pp. 245-254.
    [9] Yao, N. K., Wan, Y. M., Chen, C. C., Hung, L. Y., and Wang, S.H., “Non-connection pneumatic pumping and bi-directional microfluid control,” 第三屆奈米工程及微系統技術研討會,1999.
    [10] Yao, N. K., Wan, Y. M., Chen, C. C., Hung, L. Y., and Wang, S.H , “APPARATUS AND METHOD FOR DRIVING A MICROFLOW,” United States Patent US 6,192,939 B1, Feb. 27, 2001
    [11] 姚南光, 萬裕民, 陳啟楨, 洪隆裕, 王獻煌, 張四維, “微流體驅動方法及裝置,” 中華民國專利, 第30卷第12期.
    [12] Jen, C. P., and Lin, Y. C., “Design and simulation of bi-directional microfluid driving systems,” Journal of Micromechanics and Microengineering, Vol. 12, No.2,March 2002, pp. 115-121.
    [13] Jen, C. P., and Lin, Y. C, “Bi-Directional Control Systems For Microfluids,” Technical digest of the 15th IEEE international conference on Micro Electro Mechanical Systems, Nevada, USA, January 2002, pp. 129-132.
    [14] 林裕城, 任春平, “氣動式微流體驅動系統及發法,” 中華民國專利, 第29卷第24期, 專利證號163295I.
    [15] 鍾永強, 吳得群, 郭遠峰, 黃士豪, “氣動式微流體驅動裝置及方法,” 中華民國專利, 第30卷第12期, 專利證號177168I.
    [16] 鍾震桂, 張為傑, 蕭价伶, 翁國曜, “微流體導引裝置,” 中華民國專利, 第29卷第30期, 專利證號166879I.
    [17] 張智豪, “發展多元流體液面補捉法以計算不可壓縮流具自由液面流場,” 博士論文, 中華民國87年6月

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE