| 研究生: |
楊崧佑 Yang, Song-you |
|---|---|
| 論文名稱: |
利用迴歸方法分析相同尺寸晶片堆疊式封裝之最佳化 Optimal Design on Twin Die Stacked Packages Using Regression Analysis |
| 指導教授: |
陳榮盛
Chen, Rong-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 黏塑性 、堆疊封裝 、反應曲面法 、可靠度 、累積應變能密度 |
| 外文關鍵詞: | Accumulative Strain Energy Density, Viscoplastic, Stacked Package, Response Surface Method |
| 相關次數: | 點閱:100 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於消費性電子產品之市場日益蓬勃發展及消費者對小尺寸之要求,三維堆疊封裝結構迅速地趨於流行。然矽晶片的互相堆疊,將使材料間偶合行為更趨於複雜,已成為產品可靠度最重視、也最亟待解決的課題。
本研究以ANSYS有限元素軟體為工具,分析一雙相同尺寸晶片堆疊式封裝體於熱循環負載下,利用黏塑性有限元素法分析及Darveaux理論預測疊晶封裝體錫球接點之可靠度。在此提出錫球間平均累積應變能密度與錫球間累積應變能密度差異之觀點並搭配3D-Slice模型,以驗證疊晶封裝體之錫球接點疲勞壽命與錫球上之累積應變能密度有絕對的關係。同時,評估基板等效應力範圍對錫球接點可靠度之關係,並對三維堆疊封裝體之錫球接點疲勞壽命有時不發生在最外側錫球而獲得有效與完整的分析。再者,利用有限元素模擬分析與錫球間累積應變能密度之觀點,結合單一因子分析與反應曲面法探討堆疊晶片封裝體之封裝參數對錫球接點可靠度之影響程度,進而能快速而準確地決定最佳疊晶結構,以提昇封裝體之可靠度分析。
研究結果顯示,因相同尺寸晶片堆疊式封裝體於「晶片懸垂區」會產生額外的「晶片端部效應」影響,則#4錫球(最外側錫球)的累積應變能密度最大,使其疲勞壽命最低。此外,由單一因子分析結果,可看出較薄上晶片、較厚下晶片、較厚基板、較薄PCB、較小封膠楊氏模數及較小基板楊氏模數可提升封裝體之錫球可靠度,也發現到封膠熱膨脹係數比基板熱膨脹係數大時會改變關鍵錫球的位置。最後,以元件幾何結構及材料性質兩方面建構出個別結果之反應曲面模型,並利用F檢定法及修正判定係數驗證所建立之反應曲面的配適性,再藉由全因子實驗之因子效應分析找出各控制因子最佳水準或透過反應曲面模型以獲得最佳製程參數。
Along with the vigorous development of the electronic products market and the consumer’s preference for products with smaller size, the structure of 3D stacked die package rapidly becomes popular. Thus the stacked behavior of the silicon dies always makes the coupling effect among materials more complicate. Such an issue has been seriously paid attention to the reliability and becomes a critical problem.
This research applies the ANSYS finite element software to analyze a twin die stacked package under a thermal cycling loading. The viscoplastic finite element analysis and the Darveaux theory are applied to investigate the solder joint reliability of the stacked die package. This research will verify a significant dependence between the fatigue life of the solder joint of the stacked die package versa the distribution of the accumulative strain energy density on the solder by the viewpoint of the average and the variance of the strain energy density among solders in accordance with a 3D slice model. Meanwhile, the Von Mises stress range at the substrate is investigated for the reliability of the solder joint. It can be expected a possibility where the fatigue life of the solder joint of the stacked package is not necessary to exist on the outmost solder ball, then an efficient and complete analysis can be obtained. Furthermore, by incorporating the simulation analysis, the viewpoint of the accumulative strain energy density among solder balls, the single-factor experiment as well as the Response Surface Method, the effects of the parameters of the stacked die package on the solder joint reliability are analyzed to promptly and accurately determine the optimal stacked die structure so as to enhance the reliability of the package.
The result of study shows that more accumulative strain energy density of # 4 solder ball (the outermost solder ball) makes itself fatigue life lower because the twin die stacked package can produce extra die edge effect on the die overhang area. In addition, for enhancing solder joint reliability of the twin die stacked package, thinner top die, thicker bottom die, thicker substrate, thinner PCB, lower molding compound Young’s modulus and lower substrate Young’s modulus are preferred by the analysis result of single factor; while the molding compound CTE is larger than the substrate CTE, location of the critical solder ball changes. Finally, by the F-test and the adjusted coefficient determination, the accuracy and applicability of these response surfaces are demonstrated after building response surface models in the aspect of geometry configurations as well as material properties. Furthermore, the optimal design is obtained with full-factor experiment and response surface model.
﹝1﹞Y. Fukui, Y. Yano, H.Juso, Y. Matsune, K. Miyata, A. Narai, Y. Sato, Y. Takeda, K. Fujita, M. Kada, “Triple-Chip Stacked CSP”,IEEE Electronic Components and Technology Conference, pp.385-389,2000.
﹝2﹞John H. L. Pang, C. W. Seetoh, Z. P. Wang, “CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis”, Journal of Electronic Packaging by ASME, pp.255-261,2000.
﹝3﹞Bret A. Zahn, “Finite Element Based Solder Joint Life Predictions for a Same Die Size-Stacked Scale-Ball Grid Array Package”,IEEE, Electronics Manufacturing Technology Symposium , pp.274-284,2002.
﹝4﹞黃紹庚,“堆疊晶片封裝體熱變形與熱應力之分析與量測”,長庚大學機械工程研究所碩士論文,2004
﹝5﹞Tong Yan Tee, Zhaowei Zhong, “Board Level Solder Joint Reliability Analysis and Optimization of Pyramidal Stacked Die BGA Packages”, Microelectronics Reliability 44 pp.1957-1965,2004.
﹝6﹞李育嘉, “對堆疊式晶片構裝疲勞壽命之最佳化探討”,成功大學工程科學所碩士論文,2005
﹝7﹞龍志復,“晶圓級晶片尺寸封裝於熱循環後之可靠度分析”,逢甲大學航空工程所碩士論文,2005
﹝8﹞游晶瑩, “大尺度面積型態構裝錫球之可靠度分析”,清華大學動力機械工程系博士論文,2005
﹝9﹞Roksana Akhter, Bhavani P. D. Sandur, Mohammad Hossain, Abhijit Kaisare, Dereje Agonafer, Kent Lawrence, “Design for Stackability of Flash Memory Devices Based on Thermal Optimization”, IEEE, Digital Avionics Systems Conference , 14 pp. Vol. 2, 2005
﹝10﹞Yi-Ming Jen, Ying-Lung Wu, Chih-Kai Fang, “Impact of the Number of Chips on the Reliability of the Solder Balls for Wire-bonded Stacked-Chip Ball Grid Array Packages”, Microelectronics Reliability 46 pp.386-399,2006.
﹝11﹞陳仕祥,“利用Hybrid 模型探討多晶片構裝疲勞壽命之最佳化分析 ”,成功大學工程科學所碩士論文,2006
﹝12﹞Alfred Yeo, Charles Lee, John H. L. Pang, “Flip Chip Solder Joint Reliability Analysis Using Viscoplastic and Elastic-Plastic-Creep Constitutive Models” , IEEE , Components and Packaging Technologies,pp.355-363,2006
﹝13﹞徐秉業,劉信聲,“應用彈塑性力學”,凡異出版社,1997.
﹝14﹞劉振中,“無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析 ”,成功大學工程科學所碩士論文,2003
﹝15﹞羅家昇, “PBGA構裝體的數值模擬與最佳化之研究”,成功大學
機械工程所碩士論文,2005
﹝16﹞R. Darveaux, “Solder Joint Fatigue Life Model”, Proceedings of TMS Annual Meeting, pp.213-218,1997
﹝17﹞R. Darveaux, “Effect of Simulation Methodology on Solder Joint
Crack Growth Correlation” Proceedings IEEE 50th Electronic
Components and Technology Conference, pp.1048-1058, May 2000.
﹝18﹞葉怡成, “實驗計劃法-製程與產品最佳化”,高立圖書有限公
司,2001.
﹝19﹞Ljung,G. and George Box, “On a Measure of Lack of Fit in Time Series Models” ,Biometrica 65, pp.297-303,1978.
﹝20﹞Myers, R. H. and Montgomery, D. C.,“Response Surface
Methodology:Process and Product Optimization Using Designed
Experiments”,John Wiley & Sons,Inc.,NY,2002.
﹝21﹞Montgomery, D. C., “Design and Analysis of Experiment ” , John Wiley & Sons,Inc. Fifth Edition, 1997.
﹝22﹞李輝煌, “田口方法品質設計的原理與實務”,五南圖書有限公
司,2000.
﹝23﹞JEDEC Standard, JESD22-A104-B,Temperature Cycling ,July 2000