| 研究生: |
張鉦淇 Chang, Cheng-Chi |
|---|---|
| 論文名稱: |
晶格波茲曼法與場協同理論於多歧渠道流之混合傳熱特性研究 A study on multi-branch channel thermal mixing flow by Lattice Boltzmann method and field synergy principle |
| 指導教授: |
陳朝光
Chen, Chao-Kuang 楊玉姿 Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 混合流 、場協同理論 、阻礙物 、晶格波茲曼法 |
| 外文關鍵詞: | Lattice Boltzmann Method, mixing flow, obstacles, field synergy principle |
| 相關次數: | 點閱:133 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用晶格波茲曼法來模擬低雷諾數、穩態、不可壓縮的二維Y型渠道熱混合流。在進出口給定適當壓差使得流體能夠流動,並藉由在後段長直渠道的壁面上置入不同形狀的突起物,使得流體在衝擊到突起物後,流場與溫度場產生局部的變化,加速流場的熱混合效率。
通常在兩平板間的渠道流動置入障礙物時,會增加流體的擾動進而影響到流體的熱傳。也由於此種型態的流動在結構設計上對於熱傳效應有極大的關連,因此在實際應用設計上具有其重要性。如果進一步考慮流體具有不同溫度在渠道內混合時,渠道的幾何形狀對流體傳熱有顯著的影響,因此值得我們加以探討。
在後段長直渠道部份,置入不同數量的波浪突起物以及接地圓,當流體流經這些突起物時,因為壓力阻力的關係,使得流體產生迴流,大大的影響了渠道內的溫度分佈,更加速了流體的熱混合效率。
以另一種角度來解讀場協同理論,說明對於熱混合問題,協同角的增加,會加速高溫及低溫流體的熱交換,以達到較好的熱混合效率。
This study applies the Lattice Method to simulate low Reynolds number, steady-state and 2-D incompressible thermal mixing flow in a multi-branch channel. The pressure difference of inlet and outlet is set appropriately so that the fluid particles can be driven. To accelerate the efficiency of the thermal mixing, the distinct shapes of obstacles are inserted into the straight wall being in back of the multi-branch channel. After the fluid particles bomb into the obstacles, the variation of the flow and temperature field then generated.
When the fluid particles flow past the inserted obstacles in two parallel plates, the perturbation caused by the impact will affect the heat transfer of the flow. This type of flow is associated with the fabrication design along with the effect of heat transfer so that the application is very important. If we consider the flow with temperature difference mix inside the channel, the geometry of the channel will have great effect on thermal characteristics.
We place numbers of obstacles being in the form of wavy-like and touch down circle in the back straight part of multi-branch channel. When fluid particles flow past these obstacles, the recirculation regions are raised due to the pressure drag. The recirculation region impact on the temperature distribution magnificently and hasten the efficiency of the thermal mixing.
Taking another view of field synergy principle specify the thermal mixing problem. The increase of intersection angle will accelerate the heat exchange rate between high-temperature and low-temperature fluid particles.
Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.
Bhatnagar, P.L., & Gross, E.P., & Krook, M., “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems”, Phys. Rev., Vol. 94(3), pp. 511-525, 1954.
Chen, Chao-Kuang, & Yen, Tzu-Shuang, & Yang, Yue-Tzu, “Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 49(5-6), pp. 1195-1204, 2006.
Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.
Chen, Shiyi, & Martinez, Daniel, “On boundary condition in lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9), pp. 2527-2536, 1996.
Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.
d’Humiéres, D., & Lallemand, P., “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions”, Complex Systems, Vol. 1, pp. 599-632, 1987.
Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models”, Springer, Germany, 2000.
Filippova, Olga, & Hänel, Dieter, “Grid refinement for lattice-BGK models”, J. Comput. Phys., Vol. 147(1), pp. 219-228, 1998.
Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.
Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304, 2002.
Guo, Zhaoli, & Zheng, Chuguang, “An extrapolation method for boundary conditions in lattice Boltzmann method”, Phys. Fluids, Vol. 14(6), pp. 2007-2010, 2002.
Guo, Z. Y., & Tao, W. Q., & Shah, R. K., “The field synergy (coordination) principle and its application in enhancing single phase convective heat transfer”, Int. J. Heat Mass Transfer, Vol. 48, pp. 1797-1807, 2005.
He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., “A novel thermal model for the lattice Boltzmann in incompressible limit”, J. Comput. Phys., Vol. 146, pp. 282-300, 1998.
He, Xiaoyi, & Luo, Li-Shi, “Lattice Boltzmann model for the incompressible Navier-Stokes equation”, J. Stat. Phys., Vol. 88(3/4), pp. 927-944, 1997.
He, Xiaoyi, & Luo, Li-Shi, & Dembo, Micah, “Some progress in lattice Boltzmann method. Part1. Nonuniform mesh grids”, J. Comput. Physics, Vol. 129(2), pp. 357-363, 1996.
Higuera, F. J., & Jiménez, J., “Boltzmann approach to lattice gas simulations”, Europhys. Lett., Vol. 9(7), pp. 663-668, 1989.
Higuera, F. J., & Succi, S., & Benzi, R., “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., Vol. 9(4), pp. 345-349, 1989.
Hou, Shuling, & Zou, Qisu, “Simulation of cavity flow by the lattice Boltzmann method” , J. Comput. Phys., Vol. 118, pp. 329-347, 1995.
Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, “A non-slip condition for lattice Boltzmann simulattion”, Phys. Fluids, Vol. 7(12), pp. 2928-2930, 1995.
Incropera, Frank P., & DeWitt, David P., “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 2002.
Korichi, Abdelkader, & Oufer, Lounes, “Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls”, Int. J. Therm. Sci., Vol. 44, pp. 644-655, 2005.
Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., “Application of lattice Boltzmann model to simulate microchannel flows”, Physics of Fluids, Vol. 14(7), pp. 2299-2308, 2002.
McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.
Mei, Renwei, & Luo, Li-Shi, “An Accurate curved boundary treatment in the lattice Boltzmann method”, J. Comput. Phys., Vol. 155, pp. 307-330, 1999.
Munson, Bruce R., & Young, Donald F., & Okiishi, Theodore H., “Fundamentals of fluid mechanics”, Wiley, New York, 1998.
Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids, Vol. 7(1), pp. 203-209, 1995.
Peng, Y., & Shu, C., & Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Phys. Rev. E, Vol. 68, pp. 026701, 2003.
Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.
S. Baris, “Some simple unsteady unidirectional flows of a binary mixture of incompressible Newtonian fluids” , Int. J. Engineering Science, Vol. 40, pp. 2023-2040, 2002
Shan, Xiaowen, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, Vol. 55, pp. 2780-2788, 1997.
Shu, C., & Peng, Y., & Chew, Y. T., “ Simulation of natural convection in a square cavity by Taylor series expansion and least-square-based lattice Boltzmann method”, Int. J. Mod. Phys. C, Vol. 13, pp. 1399-1414, 2002.
Skordos, P. A., “Initial and boundary conditions for the lattice Boltzmann method”, Phys. Rev. E, Vol. 48(6), pp. 4823-4842, 1993.
S.P. Sullivan, & B.S. Akpa, & S.M. Matthews, & A.C. Fisher, & L.F. gladden, & M.L. Johns, “Simulation of miscible diffusive mixing in microchannels”, Sensor and Actuator B, Vol.123, pp. 1142-1152, 2007
Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford university press, New York, 2001.
Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.
Takaji Inamuro, & Masato Yoshino, & Hiroshi Inoue, & Riki Mizuno, & Fumimaru Ogino, ”A Lattice Boltzmann Method for a binary miscible fluid mixture and its application to a heat-transfer problem”, J. Computational Phys, Vol. 179, pp. 201-215, 2002
Tao, Wen Quan., & Guo, Zeng Yuan., & Wang, Bu Xuan, “Field synergy principle for enhancing convective heat transfer-its extension and numerical verification”, Int. J. Heat Mass Transfer, Vol. 45, pp. 3849-3856, 2002.
Tao, W. Q., & He, Y. L., & Wang, Q. W., & Qu, Z. G., & Song F. Q., “A unified analysis on enhancing single phase convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 45, pp. 4871-4879, 2002.
Valencia, Alvaro, “Heat transfer enhancement in a channel with a built-in square cylinder”, Int. Commun. Heat Mass Transf., Vol. 22(1), pp. 47-58, 1995.
Wang, L. P., & Behnam A., “Modeling fluid flow in fuel cells using the lattice-Boltzmann approach”, Mathematics and Computers in Simulation Vol. 72, pp. 242-248.,2006
Xu, A., & G. Gonnella, & A. Lamure, “Phase separation of incompressible binary fluids with lattice Boltzmann methods”, Physica A Vol. 331, pp.10-22, 2004
Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.
Zovatto, Luigino, & Pedrizzetti, Gianni, “Flow about a cylinder between parallel walls”, J. Fluid Mech., Vol. 440, pp. 1-25, 2001.
祝玉學、趙學龍譯,「物理系統的元胞自動機模擬」,北京清華大學出版社,2003。
胡寬裕,「晶格波茲曼法於複雜幾何邊界之應用」,國立清華大學碩士論文,2003。
郭照立,「模擬不可壓縮流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。
過增元,「對流換熱的物理機制及其控制:速度與熱流場的協同」,科學通報,第45卷,第9期,pp. 2118-2122,2000。
顏子翔,「應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析」,國立成功大學博士論文,2006。
孫私于,「應用晶格波茲曼法與場協同理論於流過具障礙物之渠道熱流分析」,國立成功大學碩士論文,2006