| 研究生: |
吳翊寧 Wu, Yi-Ning |
|---|---|
| 論文名稱: |
一維黏彈性內質量系統波振幅衰減之行為探討與效益評估 Wave attenuation mechanisms in an one-dimensional viscoelastic mass-in-mass system |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 地震超材料 、等效材料參數 、局部共振 、帶隙 、黏彈性材料 |
| 外文關鍵詞: | seismic metamaterials, effective medium theory, band gap, viscoelastic materials, local resonance |
| 相關次數: | 點閱:56 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地震超材料透過控制波傳的技術達成減震的效果,在近年逐漸吸引眾
多學者投入相關研究。以橡膠包裹內含物為常見的地震超材料的型態,利
用局部共振之機制,達成令入射波消能的效果,降低地震對人類社會的危
害。考量橡膠為黏彈性材料受單向作用力具潛變與鬆弛的特性,並於週期
性運動中具阻尼效應對能量之消散產生貢獻,因而對此議題進行深入探討,
了解黏彈性材料對帶隙的影響。首先介紹彈性內質量模型的消能機制與相
關參數對帶隙的控制。而後推導將彈性材料更換為黏彈性材料後的行為,
並引用實際之材料參數進行討論,說明黏彈性材料之阻尼效應可拓寬帶隙
頻寬但影響程度並不顯著。最後以物理軟體進行模擬,以傳遞率之概念驗
證超材料對於振幅衰減的效果,並與理論推導的成果相互對照,驗證於特
定之頻域波的振幅確實受影響而減小,並進行相關之探討。
A few metamaterials have been utilized to protect structures under earthquakes in recent years. Many geophysical scale experiments have been done to verify the effectiveness of seismic metamaterials. Composite cylinder made of steel core coated with rubber material is commonly used in the design of seismic metamaterials. In light of the viscoelastic property of the rubber, in this thesis we proposed a
viscoelastic mass-in-mass system and discuss the wave attenuation mechanisms of this periodic structure. Firstly, we briefly introduce the elastic mass-in-mass system and demonstrate the tendency toward different sets of mass ratios and stiffness ratios.
Next, the dissipation relation of the viscoelastic mass-in-mass system is derived based on equation of motion and Bloch’s theorem by adding node in the discrete model of viscoelastic material. By incorporating the damping effect of viscoelastic material in consideration, the result shows that bandgap could be extended. Finally, we use a physics simulation software to prove the effectiveness of wave attenuation in viscoelastic mass-in-mass systems for specific frequency ranges.
Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S. and Guenneau, S. Clamped seismic metamaterials: ultra-low frequency stop bands. New Journal of Physics 19: 063022, (2017).
Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S. and Guenneau, S. Seismic waves damping with arrays of inertial resonators. Extreme Mechanics Letters 8: 30-37, (2016).
Bloch, F. Über die quantenmechanik der elektronen in kristallgittern. Zeitschrift Für Physik 52: 555-600, (1929).
Bodai, G. and Goda, T. A New, Tensile Test-based Parameter Identification Method for Large-Strain Generalized Maxwell-Model. Acta Polytechnica Hungarica 8: 89-108, (2011).
Brûlé, S., Enoch, S. and Guenneau, S. Emergence of seismic metamaterials: Current state and future perspectives. Physics Letters A 384:126034, (2020).
Brûlé, S., Javelaud, E., Enoch, S. and Guenneau, S., Experiments on seismic metamaterials: molding surface waves, Physical Review Letters 112, 133901 (2014).
Brûlé, S., Javelaud, E. H., Enoch, S. and Guenneau, S., Flat lens effect on seismic waves propagation in the subsoil, Scientific Reports 7, 18066 (2017).
Colombi, A., Roux, P., Guenneau, S., Gueguen P. and Craster, R., Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances, Scientific Reports 6, 19238 (2016).
Du, Q., Zeng, Y., Huang, G. and Yang, H., Elastic metamaterial-based seismic shield for both Lamb and surface waves, AIP Advances 7, 075015 (2017).
Du, Q., Zeng, Y., Xu, Y., Yang, H. and Zeng, Z. H-fractal seismic metamaterial with broadband low-frequency bandgaps. Journal of Physics D: Applied Physics 51: 105104, (2018).
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials 5, 452 (2006).
Geng, Q., Zhu, S. and Chong, K. P. Issues in design of one-dimensional metamaterials for seismic protection. Soil Dynamics and Earthquake Engineering 107: 264-278, (2018).
Hewage, T. A., Alderson, K. L., Alderson, A. and Scarpa, F. Double‐Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties. Advanced Materials 28: 10323-10332, (2016).
Huang, H. H. and Sun, C. T. Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philosophical Magazine 91: 981-996, (2011).
Huang, H. H. and Sun, C. T. A study of band-gap phenomena of two locally resonant acoustic metamaterials. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 224: 83-92, (2010).
Huang, H. H. and Sun, C. T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics 11: 15, (2009).
Huang, H. H., Sun, C. T. and Huang, G. L. On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science 47: 610-617, (2009).
Hussein, M. I., Leamy, M. J. and Ruzzene, M. Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook. Applied Mechanics Reviews 66: 38, (2014).
Kim, S.-H. and Das, M. P., Seismic waveguide of metamaterials, Modern Physics Letters B 26, 1250105 (2012).
Krushynska, A. O., Kouznetsova, V. G. and Geers, M. G. D. Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials. Journal of the Mechanics and Physics of Solids 96: 29-47, (2016).
Lakes, R. S., Viscoelastic solids, CRC Press, (1999).
Lewińska, M. A., Kouznetsova, V. G., van Dommelen, J. A. W., Krushynska, A. O. and Geers, M. G. D. The attenuation performance of locally resonant acoustic metamaterials based on generalised viscoelastic modelling. International Journal of Solids and Structures 126-127: 163-174, (2017).
Liao, S. and Sangrey, DA., Use of piles as isolation barriers, Journal of the Geotechnical Engineering Division 104, 1139-1152, (1978).
Liu, Z. Y., Zhang, X. X., Mao, Y. W., Zhu, Y. Y., Yang, Z. Y., Chan, C. T. and Sheng, P. Locally resonant sonic materials. Science 289: 1734-1736, (2000).
Liu, X.-N., Hu, G.-K., Huang, G.-L. and Sun, C.-T., An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters 98, 251907 (2011).
Liu, Y. Q., Su, X. Y. and Sun, C. T. Broadband elastic metamaterial with single negativity by mimicking lattice systems. Journal of the Mechanics and Physics of Solids 74: 158-174, (2015).
Malkin, A. Y. and Isayev, A. I., Rheology: Concepts, Methods, and Applications, Elsevier Science, (2017).
Maurel, A., Marigo, J.-J., Pham, K. and Guenneau, S., Conversion of Love waves in a forest of trees, Physical Review B 98, 134311 (2018).
Manger, G. E., Porosity and Bulk Density of Sedimentary Rocks, (United States Geological Survey, 1963).
Milton, G. W., Briane, M. and Willis, J. R., On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics 8, 248 (2006).
Manimala, J. M. and Sun, C. T. Microstructural design studies for locally dissipative acoustic metamaterials. Journal of Applied Physics 115: 023518, (2014).
Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M., Large scale mechanical metamaterials as seismic shields, New Journal of Physics 18, 083041 (2016).
Mu, D., Shu, H., Zhao, L. and An, S. A Review of Research on Seismic Metamaterials. Advanced Engineering Materials 22:1901148, (2020).
Norris, A. N., Acoustic cloaking, Acoust. Today 11, 38-46 (2015).
Pendry, J. B., Schurig, D. and Smith, D. R., Controlling electromagnetic fields, Science 312, 1780-1782 (2006).
Pendry, J. B. Negative refraction makes a perfect lens. Physical Review Letters 85: 3966-3969, (2000).
Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Engineering in Medicine and Biology Magazine 47: 2075-2084, (1999).
Pendry, J. B., Holden, A. J., Stewart, W. J. and Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters 76: 4773-4776, (1996).
Richart, F. E., Hall, J. R. and Woods, R. D., Vibrations of Soils and Foundations, Englewood Cliffs, New Jersey: Prentice-Hall, (1970).
Roeder, R. K. (2013). Chapter 3 - Mechanical Characterization of Biomaterials. In A. Bandyopadhyay & S. Bose (Eds.), Characterization of Biomaterials (pp. 49-104). Oxford: Academic Press.
Roux, P., Bindi, D., Boxberger, T., Colombi, A., Cotton, F., Douste‐Bacque, I., Garambois, S., Gueguen, P., Hillers, G. and Hollis, D., Toward seismic metamaterials: The METAFORET project, Seismological Research Letters 89, 582-593 (2018).
Roylance, D. Engineering Viscoelasticity. (2001).
Shelby, R. A., Smith, D. R. and Schultz, S. Experimental verification of a negative index of refraction. Science 292: 77-79, (2001).
Smith, D. R., Padilla, W. J., Vier, D., Nemat-Nasser, S. C. and Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 84: 4184, (2000).
Smith, D. R., Pendry, J. B. and Wiltshire, M. C., Metamaterials and negative refractive index, Science 305, 788-792 (2004).
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Physics Uspekhi 10: 509-514, (1968).
Wu, Y., Lai, Y. and Zhang, Z. Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters 107: 105506, (2011).
Yao, S., Zhou, X. and Hu, G. Experimental study on negative effective mass in a 1D mass–spring system. New Journal of Physics 10: 043020, (2008).
Zigoneanu, L., Popa, B.-I. and Cummer, S. A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials 13: 352-355, (2014).
簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽. 新型態外部隔減震技術-地震超材料之設計與分析. 中國土木水利工程學刊 31:Start Page: 395-410, (2019)。
謝志忠,地震超材料對於震波能量衰減行為的探討,國立成功大學土木所碩士論文, (2020)。
李冠慧,地震超材料設計之減震模擬及效益評估,國立成功大學土木所碩士論文, (2019)。