簡易檢索 / 詳目顯示

研究生: 賴湘微
Lai, Hsiang-Wei
論文名稱: 二維負普松材料之彈性與非彈性分析
ELASTIC AND INELASTIC ANALYSIS OF 2D AUXETIC MATERIALS
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 128
中文關鍵詞: 相場模擬裂紋彈性黏彈性塑性負普松負勁度階級材料
外文關鍵詞: Phase field modeling, Crack, Elasticity, Viscoelasticity, Plasticity, Negative stiffness (NS), Hierarchical material
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有負普松性質(NPR)之材料——所謂的拉脹結構材料,在於軸向拉伸時,其橫向尺寸增加,反之尺寸縮小。在材料之力學效應中,材料的微觀結構對於普松比而言具有相當的主導性。在本論文中,使用有限元素法對於具有星形單元之蜂巢結構於彈性及非彈性力學性質之面向進行研究及討論。於彈性性質之面相,進行了微結構材料之頻散曲線分析。在蜂巢結構骨幹比於0.095時在頻率介於33kHz至40kHz之間,有最佳的降低噪音及隔震效果。此外,被填充的負普松蜂巢材料可以增強約百分之20之負普松效應,亦可增強其黏彈特性,而此增強機制是由長度尺度之分層效應所造成。亦透過建立相場模型,研究負普松蜂巢結構對在裂紋擴張以及鐵彈相變換引起的負勁度(NS)效應下的行為,而在裂紋項場中可以發現增加骨幹大小0.1 cm可以增加材料最大應力之百分之十。於負普松材料中之非彈性性質之面向,將溫度相依之材料特性導入具內凹單元形狀之彈塑性分析中。在施加力學載重及溫度加載下,傳統外凸形的蜂巢單元結構可變形為內凹形狀,其中,力學載重用於主導單元變形,並於變形時給予溫度加載以協助釋放其應力,從而在卸載後保持內凹形狀,並進行參數研究,以建立製造條件及得到該模型之負普松比。

    Negative Poisson's ratio (NPR) materials, also known as auxetic materials, expand (reduce) their lateral dimensions under tension (compression). Microstructures of materials play a dominant role in affecting their effective Poisson's ratio. In this work, both elastic and inelastic aspects of honeycomb-like materials with star-shaped cells are studied with finite element methods. For elastic responses, dispersion curves of microstructured materials are analyzed. Bandgaps in certain frequency range are identified for possible applications in noise and vibration reduction. At the honeycomb structure skeletal ratio of 0.095, the frequency is between 33kHz and 40kHz, which has the best noise reduction and isolation effect. Filled NPR honeycombs may exhibit enhanced auxetic behavior, about 20% increase, as well as enhanced viscoelastic properties. The mechanism for such enhancement in auxeticity is due to length-scale hierarchical effects. With the phase-field modeling, crack propagation and ferroelasticity-induced negative stiffness (NS) effects in NPR honeycomb have been investigated. In the crack phase field model, it can be found that increasing the backbone size by 0.1 cm can increase the maximum stress of the material by 10%. For inelastic responses of the NPR materials, temperature-dependent material properties are incorporated in the elastoplastic analysis of the formation of reentrant cell shape. Under both the mechanical and thermal loading, conventional honeycomb cells can be transformed into reentrant shapes, where mechanical load serves as deforming the cells and thermal load relaxing the stresses in cell ribs, so that after unloading the reentrant shape can be maintained. Parametric studies are conducted for establishing manufacturing conditions and resultant negative Poisson's ratio.

    CHINESEABSTRACT.................................. i ABSTRACT ........................................ ii ACKNOWLEDGMENTS................................. iii LISTOFTABLES..................................... vi LISTOFFIGURES.................................... vii NOMENCLATURE.................................... xiii 1 Introduction...................................... 1 1.1 Goalsandmotivation ............................... 1 1.2 Literaturereview ................................. 1 1.2.1 Auxeticmaterials............................. 1 1.2.2 Fillermaterials .............................. 2 1.2.3 Phasefieldmodeling ........................... 3 1.3 Outlineofthisthesis ............................... 3 2 Theoreticalconsiderations .............................. 4 2.1 Elasticityanddispersioncurves.......................... 4 2.1.1 Floquet-Blochtheory........................... 5 2.2 Viscoelasticity................................... 8 2.3 Plasticity ..................................... 9 2.3.1 Thecriterionofisotropicsystem..................... 10 2.3.2 Thecriterionofanisotropicsystem.................... 11 2.4 Two-dimensionphasefieldmodel ........................ 14 2.4.1 Phasefieldmodelingofferroelasticsystem . . . . . . . . . . . . . . . 14 2.4.2 Phasefieldmodelingofcracksystem .................. 15 2.4.3 Weakformforferroelasticandcrack................... 17 3 Numericalconsiderations............................... 19 3.1 Finiteelementsolver ............................... 19 3.2 Modeldescription................................. 20 3.2.1 Phasefieldmodel............................. 20 3.2.2 Dispersioncurve ............................. 22 3.2.3 Effectsoffilled.............................. 25 3.2.4 Plasticitythermomechanics ....................... 28 3.2.5 Effectsofmicrostructurematerials.................... 31 4 Resultsanddiscussion ................................ 32 4.1 Effectsofauxeticfillermodel........................... 32 4.1.1 Effectsoffiller’smodulus ........................ 32 4.1.2 Effectsoffiller’sPoisson’sratio ..................... 36 4.1.3 Effectiveviscoelasticproperties ..................... 37 4.2 Microstructurematerialtest............................ 45 4.3 Phasefieldmodelingofferroelasticandcrackmodel . . . . . . . . . . . . . . 50 4.3.1 Phasefieldmodelingofcrackmodel................... 50 4.3.2 Phase field modeling of ferroelastic material with crack test . . . . . . 74 4.4 Dispersioncurve ................................. 76 4.4.1 Compositematerialtest ......................... 76 4.4.2 Microstructuematerialtest........................ 85 5 Conclusionsandfuturework............................. 90 5.1 Conclusions.................................... 90 5.2 Futurework.................................... 92 LISTOFREFERENCES................................. 93 APPENDICES Appendix A: Residual Stress Analysis of an Orthotropic Composite Cylinder under ThermalLoadingandUnloading ................... 96 AppendixB: Presentationslides........................... 107 Index ............................................ 128

    [1] A. G Kolpakov. Determination of the average characteristics of elastic frameworks, vol- ume 49(6). 1985.
    [2] R.S. Lakes. Foam structures with a negative poisson’s ratio. Science, 235(4792):1038– 1040, 1987.
    [3] K.E. Evans, M.A. Nkansah, I.J. Hutchinson, and S.C. Rogers. Molecular network design. Nature, 353(6340):124–124, 1991.
    [4] R. S. Lakes. Advances in negative poisson’s ratio materials. Advanced Materials, 5(4):293–296, 1993.
    [5] T. C. Lim. Auxetic materials and structures. Springer, 2015.
    [6] K.W. Wojciechowski. Poisson’s ratio of anisotropic systems. Computational Methods in
    Science and Technology, 11(1):73–79, 2005.
    [7] J. W Narojczyk and K. W. Wojciechowski. Poisson’s ratio of the fcc hard sphere crystals with periodically stacked (001)-nanolayers of hard spheres of another diameter. Materials, 12(5):700, 2019.
    [8] Y. C. Wang, M. W. Shen, and S. M. Liao. Microstructural effects on the poisson’s ratio of star-shaped two-dimensional systems. Physica Status Solidi (b), 254(12):1700024, 2017.
    [9] S. V. Dmitriev, T. Shigenari, and K. Abe. Poisson ratio beyond the limits of the elasticity theory. Journal of the Physical Society of Japan, 70(5):1431–1432, 2001.
    [10] K. W. Wojciechowski. Constant thermodynamic tension monte carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Molecular Physics, 61(5):1247–1258, 1987.
    [11] K. W. Wojciechowski. Two-dimensional isotropic systems with a negative poisson ratio. Physics Letters A, 137(1-2):60–64, 1989.
    [12] J. N. Grima, R. Gatt, A. Alderson, and K. E. Evans. On the potential of connected stars as auxetic systems. Molecular Simulation, 31(13):925–935, 2005.
    [13] J. N. Grima, E. Manicaro, and D. Attard. Auxetic behaviour from connected different- sized squares and rectangles. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2126):439–458, 2010.
    [14] L. Mizzi, K. M. Azzopardi, D. Attard, J. N. Grima, and R. Gatt. Auxetic metamaterials exhibiting giant negative poisson’s ratios. Physica Status Solidi (RRL)–Rapid Research Letters, 9(7):425–430, 2015.
    [15] Y. C. Wang and R. S. Lakes. Composites with inclusions of negative bulk modu- lus: extreme damping and negative poisson’s ratio. Journal of Composite Materials, 39(18):1645–1657, 2005.
    [16] D. Li, T. Jaglinski, D.S. Stone, and R.S. Lakes. Temperature insensitive negative poisson’s ratios in isotropic alloys near a morphotropic phase boundary. Applied Physics Letters, 101(25):251903, 2012.
    [17] T. M. Jaglinski and R. S. Lakes. Negative stiffness and negative poisson’s ratio in materials which undergo a phase transformation. Adaptive Structures–Engineering Applications, pages 231–246, 2007.
    [18] S. Xinchun and R.S. Lakes. Stability of elastic material with negative stiffness and negative poisson’s ratio. Physica Status Solidi (b), 244(3):1008–1026, 2007.
    [19] T. A. M. Hewage, K. L. Alderson, A. Alderson, and F. Scarpa. Double-negative mechan- ical metamaterials displaying simultaneous negative stiffness and negative poisson’s ratio properties. Advanced Materials, 28(46):10323–10332, 2016.
    [20] R. S. Lakes and K. W. Wojciechowski. Negative compressibility, negative poisson’s ratio, and stability. Physica Status Solidi (b), 245(3):545–551, 2008.
    [21] M.W. Shen Y.C. Wang. Uniaxial dynamic mechanical responses of ferroelastic materials under temperature cycling via phase field modeling. Physica Status Solidi (b), pages 1428– 1439, 2016.
    [22] Y. C. Wang, H. W. Lai, and M. W. Shen. Effects of cracks on anomalous mechanical behavior and energy dissipation of negative-stiffness plates. Physica Status Solidi (b), 256(1):1800489, 2019.
    [23] Y. C. Wang, C. C. Ko, and K. W. Chang. Anomalous effective viscoelastic, thermoelastic, dielectric and piezoelectric properties of negative-stiffness composites and their stability. Physica Status Solidi (b), page submitted, 2015.
    [24] Yun-Che Wang, Chih-Chin Ko, et al. Energy dissipation of steel-polymer composite beam- column connector. Steel and Composite Structures, 18(5):1161–1176, 2015.
    [25] Y. Li, S. Hu, X. Sun, and M. Stan. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. npj Computational Materials, 3(1):16, 2017.
    [26] M. R. Tonks and L. K. Aagesen. The phase field method: Mesoscale simulation aiding material discovery. Annual Review of Materials Research, 49, 2019.
    [27] L. Q. Chen. Phase-field models for microstructure evolution. Annual Review of Materials Research, 32:113–140, 2002.
    [28] Benjamin Vo ̈lker, Marc Kamlah, and Jie Wang. Phase-field modeling of ferroelectric ma- terials.
    [29] R. W. Soutas-Little. Elasticity. Courier Corporation, 1999.
    [30] R. S. Lakes and W. J. Drugan. Dramatically stiffer elastic composite materials due to a negative stiffness phase? Journal of the Mechanics and Physics of Solids, 50(5):979– 1009, 2002.
    [31] P. Go ́mez Garc ́ıa and J. P. Ferna ́ndez-Alvarez. Floquet-bloch theory and its application
    to the dispersion curves of nonperiodic layered systems. Mathematical Problems in Engi- neering, 2015, 2015.
    [32] M. I. Hussein, K. Hamza, G. M. Hulbert, and K. Saitou. Optimal synthesis of 2d phononic crystals for broadband frequency isolation. Waves in Random and Complex Me- dia, 17(4):491–510, 2007.
    [33] Y. C. Wang and C. C. Ko. Stability of viscoelastic continuum with negative-stiffness in- clusions in the low-frequency range. Physica Status Solidi (b), 250(10):2070–2079, 2013.
    [34] R.S. Lakes. Viscoelastic materials. Cambridge University Press, New York, NY, USA, 2009.
    [35] R. D. Cook, D. S. Malkus, M.E. Plesha, and R.J. Witt. Concepts and applications of finite element analysis, 4th Ed. John Wiley & Sons, 2001.
    [36] COMSOL. Website. http://www.comsol.com, 2019.
    [37] H. Argeso and A. N. Eraslan. On the use of temperature-dependent physical properties in thermomechanical calculations for solid and hollow cylinders. International Journal of Thermal Sciences, 47(2):136–146, 2008.
    [38] PS Preve ́y. Residual stress in design, process and materials selection, ed. wb young. Am. Soc. for Met., Metals Park, Ohio, pages 11–19, 1987.
    [39] Biyu Tian. Numerical simulation of elastic wave propagation in honeycomb core sandwich plates. PhD thesis, Chaˆtenay-Malabry, Ecole centrale de Paris, 2012.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE