| 研究生: |
高浩偉 Kao, Hao-Wei |
|---|---|
| 論文名稱: |
二維聲子晶體的負折射行為 Negative refraction in two dimensional phononic crystal |
| 指導教授: |
張怡玲
Chang, I-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 色散關係 、聲子晶體 、負折射 |
| 外文關鍵詞: | dispersion relation, phonon crystal, negative refraction |
| 相關次數: | 點閱:57 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以彈簧與質量塊組成的週期系統為基礎,提出一個由兩種質量塊交錯擺放組合的結構,並且計算此結構的色散關係與等頻圖,得到其可以造成負折射之現象的結果。並且藉由有限差分的模擬方式模擬波實際上在結構中傳遞的行為是否與從等頻圖中預測的結果相符,可見其結果為吻合。為了增加此結構的應用性,藉由參數分析如何得到較大的頻寬,發現在兩質量塊質量接近時能得到較大的頻寬並且等頻圖不會呈現直線以至於折射波趨於準直現象,若使兩質量塊質量相差很大或是增加彈簧常數k_2的大小,雖然都能得到相當大的頻寬,但是有較大的比例等頻圖呈現直線以至於折射波趨於準直現象。
為了使前述離散的彈簧質量系統得到的結果格能有效地應用,本文將彈簧質量塊系統類比成平板中的結構,在色散曲線中可以在同頻率帶處找到一條曲線具負斜率,經過等頻圖的折射角判斷並且以有限元素的全波模擬證實其負折射的效果。
In this paper, basing on the periodic system consisting of spring and mass, presents a structure composed of two mass masses arranged in a staggered pattern. Then can calculating the dispersion relation and the equifrequency contour of the structure to obtain the result that it can cause negative refraction. By simulating with the finite difference method, the result showed that the wave actually transmitted in the structure behaves negative refraction. In order to increase the applicability of this structure, how to get a larger bandwidth that can get negative refraction is an issue. By parameter analysis, we can find that when the masses of two masses are close, a larger bandwidth can be obtained and the contour do not appear straight so that the refracted waves tend to be collimation.
In order to apply the results obtained by the discrete spring mass system described above effectively, the spring mass system is applied in the structure as phononic crystal in a plate. In the dispersion curve, a curve with a negative slope can be found at the same frequency that can find negative refraction in spring mass system. With finite element analysis, the negative refraction can be found in the phononic crystal plate.
[1] V. Veselago, "Electrodynamics of substances with simultaneously negative value ε and μ," Soviet Physics Uspekhi., vol. 10, no. 4, pp. 509-514, 1968.
[2] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, 1987.
[3] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Physical Review Letters, vol. 71, no. 13, pp. 2022-2025, 1993.
[4] J.-C. Hsu and T.-T. Wu, "Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates," Physical Review B, vol. 74, no. 14, pp.144303-144310, 2006.
[5] Z. Hou and B. M. Assouar, "Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method," Physics Letters A, vol. 372, no. 12, pp. 2091-2097, 2008.
[6] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, vol. 84, no. 18, pp. 4184-4187, 2000.
[7] J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol. 85, no. 18, pp. 3966-3969, 2000.
[8] L. Zhengyou, Z. Xixiang, M. Yiwei, Z. YY, Y. Zhiyu, C. Che T. Sheng Ping., "Locally resonant sonic materials," Science, vol. 289, no. 5485, pp. 1734-1736, 2000.
[9] F. Nicholas, X. Dongjuan, X. Jianyi, A. Muralidhar, S. Werayut, S. Cheng, Z. Xiang., "Ultrasonic metamaterials with negative modulus," Nature materials, vol. 5, no. 6, pp. 452-456, 2006.
[10] H. Huang and C.T. Sun, "Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density," New Journal of Physics, vol. 11, no. 1, pp. 013003-013017, 2009.
[11] J. Li and C. Chan, "Double-negative acoustic metamaterial," Physical Review E, vol. 70, no. 5, pp. 055602-055605, 2004.
[12] Y. Ding, Z. Liu, C. Qiu, and J. Shi, "Metamaterial with simultaneously negative bulk modulus and mass density," Physical Review Letters, vol. 99, no. 9, pp. 093904-093907, 2007.
[13] H. Huang and C.T. Sun, "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus," The Journal of the Acoustical Society of America, vol. 132, no. 4, pp. 2887-2895, 2012.
[14] Z. Liang and J. Li, "Extreme acoustic metamaterial by coiling up space," Physical Review Letters, vol. 108, no. 11, pp. 114301-114304, 2012.
[15] Y. Xie, B.-I. Popa, L. Zigoneanu, and S. A. Cummer, "Measurement of a broadband negative index with space-coiling acoustic metamaterials," Physical Review Letters, vol. 110, no. 17, pp. 175501-175504, 2013.
[16] T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C. S. Lin, and T. J. Huang, "Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate," Applied Physics Letters, vol. 98, no. 17, pp. 171911-171914, 2011.
[17] X. Zhou, M. B. Assouar, and M. Oudich, "Acoustic superfocusing by solid phononic crystals," Applied Physics Letters, vol. 105, no. 23, pp. 233506-233510, 2014.
[18] R. Zhu, X. Liu, G. Hu, C. Sun, and G. Huang, "Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial," Nature Communications, vol. 5, p. ncomms6510, 2014.
[19] S.-D. Zhao and Y.-S. Wang, "Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure," Comptes Rendus Physique, vol. 17, no. 5, pp. 533-542, 2016.