| 研究生: |
陳頵 Chen, Chun |
|---|---|
| 論文名稱: |
碳黑含量對不同相對密度泡沫水泥物理性質之影響 Effects of Carbon Black Fraction on the Physical Properties of Cementitious Foams with Different Relative Densities |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 環保碳黑 、相對密度 、泡沫水泥 、吸熱效果 、抗壓強度 、吸水率 |
| 外文關鍵詞: | eco-carbon black, relative density, cementitious foam, heat absorption, temperature change , compressive strength, water absorption |
| 相關次數: | 點閱:54 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廢輪胎於土木工程中之再利用方式,除直接作為簡易擋土牆及鋪面材料外,廢輪胎亦可經由熱裂解程序後製成環保碳黑,本研究評估將環保碳黑取代部分卜特蘭水泥,應用於製作水泥質材料之可行性。首先,製成含環保碳黑之水泥膠結材後,分別進行流度、吸熱、吸水率與抗壓強度等一系列試驗,藉由試驗結果分析與比較,探討不同碳黑添加量對所製成水泥膠結材物理性質之影響。接著,採用機械發泡法製作泡沫水泥膠結材,觀察不同相對密度對泡沫水泥膠結材吸熱及吸水效果之變化,最後,將環保碳黑添加於泡沫水泥膠結材中,分析不同碳黑添加量與空氣含量,對泡沫水泥試體吸熱效能、抗壓強度及吸水率等之影響。
試驗結果發現,固定環保碳黑添加量下,空氣含量越多之含碳黑泡沫試體,其吸熱效果越佳,此乃因環保碳黑使膠結材吸收更多熱量,泡沫試體內部空氣則阻擋熱量散失,使得含碳黑泡沫試體內部產生更高升溫現象。若固定泡沫試體相對密度,所製成含碳黑泡沫試體之吸熱效果,則隨碳黑添加量增加而提升,其中添加12%環保碳黑者具最高升溫幅度。同時,當大氣溫度變化較大時,含碳黑泡沫試體之吸熱效果,可能較含碳黑水泥試體為佳,表示含碳黑泡沫水泥可作為營建保溫材料。另外,添加4%環保碳黑之泡沫水泥試體具最高晚期抗壓強度,若環保碳黑添加量持續增加,將造成泡沫水泥試體抗壓強度之降低。最後,吸水率試驗結果顯示,添加2%以上碳黑之泡沫水泥試體,其吸水率較未添加碳黑者高,可應用於作為環保吸音材料。
關鍵字: 環保碳黑、相對密度、泡沫水泥、吸熱效果、抗壓強度、吸水率
SUMMARY
Waste tires can be reused as construction materials in simple retaining walls and pavements of civil engineering. Also, waste tires can be torn down into eco-carbon black powders after going through thermal decomposition. In this study, eco-carbon black powders were introduced to partially replace Portland cement in producing cementitious materials. The effects of eco-carbon black fraction and air content on the temperature change, water absorption and compressive strength of foamed cementitious materials were analyzed experimentally. Based on the results of heat absorption tests, it is found that the temperature change of the foamed specimens increases with increasing air content when the amount of eco-carbon black is fixed. The reason for that can be attributed to the heat absorption of eco-carbon black and the thermal insulation of air inside the foamed specimens, causing a higher temperature rise. In addition, the effect of heat absorption of the foamed specimens increases with the amount of eco-carbon black if their air contents are the same. Consequently, the temperature rise of the foamed specimen with 12% eco-carbon black is the highest. Furthermore, the temperature rise inside the foamed specimens is higher than that inside the cement binders as the atmospheric temperature changes greatly. It is verified that the eco-carbon cementitious foam can be used as a thermal-preserving building material. The results on water absorption tests show that the water absorption rate of the cementitious foams with more than 2% eco-carbon black is higher than that without any eco-carbon black. The late compressive strengths of the cementitious foams reach a maximum at 4% eco-carbon black and then drop significantly as the fraction of eco-carbon black is increased continuously. Hence, the cementitious foam with 4% eco-carbon black can be regarded as an environmentally-friendly thermal-preserving or sound-absorbing building material in the future.
Key words: eco-carbon black, relative density, cementitious foam, heat absorption, temperature change, compressive strength, water absorption
[1] 行政院全球資訊網,https://www.ey.gov.tw/index/。
[2] 行政院環境保護署 環保新聞專區,https://enews.epa.gov.tw/Page/B514A5023133ED27。
[3] 環拓科技股份有限公司,https://www.enrestec.com.tw/。
[4] 全國法規資料庫,https://law.moj.gov.tw/Index.aspx。
[5] 國際中橡碳黑事業,https://www.continentalcarbonasia.com/tw/index.html。
[6] 孫玉海、蓋國勝、張培新,「裂解碳黑作為橡膠填料的應用研究」,北京清華大學材料系粉體工程研究室,2003。
[7] 周潔,「熱解碳黑的表面特性及其資源化應用研究」,浙江大學化學工程研究所,博士論文,2006。
[8] 綠色貿易資訊網,https://www.greentrade.org.tw/。
[9] Shi, L., Lu, Y. and Bai, Y., “Mechanical and electrical characterization of steel fiber and carbon black engineered cementitious composites,” Procedia Engineering., Vol. 188, pp. 325-332 (2017).
[10] Song, N.X., Song, M., Zhang, Y.L. and Wang, J., “Study on Mechanical Performance of ECC Reinforced by Polypropylene Fiber Mixed with Manufactured Sand and Carbon Black (CBMSPP-ECC) Based on Response Surface Method, ”Advances in Materials Science and Engineering., Vol.2022,Article ID 8228228 (2022).
[11] Parvan, M.G., Voicu, G. and Badanoiu, A.I., “Study of hydration and hardening processes of self-sensing cement-based materials with carbon black content,” Journal of Thermal Analysis and Calorimetry, Vol.139, No. 8, pp. 807-815 (2020).
[12] 許壹登,「廢輪胎應用於製作水泥質營建材料」,國立成功大學土木工程研究所,碩士論文,2020。
[13] Mylona, S.K., Chibante, F., Romero-Zeron, L. and Hume, D., “Investigation of the Thermal Conductivity and the Viscosity of Carbon Black Heat Transfer Nanofluids”, 1st International Conference of Nanofluids, S7, pp.460 – 463(2019).
[14] Gibson, L.J. and Ashby, M.F., “ Cellular solids: structure and properties.”, 2nd edition, Cambridge UK: Cambridge University Press, 1997.
[15] 中國土木水利工程學會,《混凝土工程施工須知》,科技圖書,增訂18版,1993。
[16] 蘭振甲、何豔君,泡沫混凝土實用生產技術,化學工業出版社,2006。
[17] Hung, T.C., Huang, J.S., Wang, Y.W. and Fan, Y.C., “Microstructure and Properties of Metakaolin-Based Inorganic Polymer Foams”, Journal of Materials Science, Vol. 48, pp. 7446-7455 (2013).
[18] 楊昆憲,「含矽質廢棄物之發泡無機聚合物」,國立成功大學土木工程研究所,博士論文, 2015。
[19] Hung, T.C., Huang, J.S., Wang, Y.W. and Lin, K.Y., “Inorganic polymeric foam as a sound absorbing and insulating material”, Construction and Building Materials, Vol. 50, pp. 328-334 (2014).
[20] Kou, R.T., Guo, M.Z., Shi, Y.Y., Mei, M.F, Jiang, L.H., Chu, H.Q., Zhang, Y.Z., Shen, H.Q., Xue, L.K., “Sound-insulation and photocatalytic foamed concrete prepared with dredged sediment” , Journal of Cleaner Production,Vol.356(2022).
[21] Jia, H.L., Cui, B., Niu, G.Q., Chen, J., Yang, Y.Q., Wang, Q.Y., Tang, C.H., “Experimental and mechanism study on the impermeability and thermal insulation of foam concrete regulated by nano-silica and fluorine-free foam”, Journal of Biulding Engineering,Vol.64(2023).
[22] Zhang, W.P., Min, H.G., Gu, X.L., Xi, Y.P. and Xing, Y.S., “ Mesoscale model for thermal conductivity of concrete ”,Construction and Building Materials, Vol.98, pp.8-16(2015).
[23] Asadi, I., Shafigh, P., Hassan, Z.F.B.A. and Norhayati, B.M., “ Thermal conductivity of concrete – A review ”,Journal of building Engineering, Vol. 20, pp. 81-93(2018).
[24] Ganesan, S., Mydin, M.A.O., Yunos, M.Y.M. and Nawi, M.N.M, “Thermal properties of foamed concrete with various densities and additives at ambient temperature ”,Applied Mechanics and materials, Vol.747,pp230-233(2015).
[25] Farkas, H., Kály-Kullai, K. and Sieniutycz, S., “The Fermat Principle and Chemical Waves”, Variational and Extremum Principles in Macroscopic Systems, pp.355-373(2005).
[26] 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,2004。
[27] 馬大猷、楊訓仁,聲學漫談,牛頓出版社,1996。
[28] 白明憲,工程聲學,全華科技圖書股份有限公司,2006。
[29] 行政院環境保護署,噪音原理防制材料簡介手冊。
[30] Laukaitis, A. and Fiks, B., “Acoustical properties of aerated autoclaved concrete” , Applied Acoustics, vol. 67, pp.284-296(2006).
[31] Yang, K.H., Lo, C.W. and Huang, J.S., “Production and Properties of Foamed Reservoir Sludge Inorganic Polymers”, Cement and Concrete Composites, Vol. 38, pp. 50-56 (2013).
[32] CNS 15992,「水硬性水泥砂漿流度試驗法」,2017。
[33] CNS 1010,「水硬性水泥墁料抗壓強度檢驗法」,1993。
[34] 氣象局觀測資料查詢系統,
https://e-service.cwb.gov.tw/HistoryDataQuery/。
[35] ASTM C642-13,“ Standard Test Method for Density, Absorption, and Voids in Hardened Concrete”, 2013.