| 研究生: |
王振倫 Wang, Jhen-Lun |
|---|---|
| 論文名稱: |
Fenna-Matthews-Olson複合體中激發轉移的量子過程能力之研究 Quantum Process Capabilities of Excitation Transfer in the Fenna-Matthews-Olson Complex |
| 指導教授: |
李哲明
Li, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | Fenna-Matthews-Olson複合體 、量子同調 、量子糾纏 、量子過程能力 、量子過程 |
| 外文關鍵詞: | Fenna-Matthews-Olson complex, Quantum coherence, Quantum entanglement, Quantum process capability, Quantum process |
| 相關次數: | 點閱:177 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fenna-Matthews-Olson(FMO)複合體是一個八體結構,被某些類型的細菌用於將激發從光捕獲接收端轉移到行光合作用的反應中心;在本篇論文,我們以定量精確的方式表徵FMO複合體中激發轉移的量子力學特徵,並引入兩種不同的量度來量化糾纏生成、同調性產生和保存、疊加產生的能力、以及量子態在室溫下能量轉移的動態過程的疊加。由於這些能力的度量不依賴被處理狀態的任何細節,因此我們提供了一種全面的方法,用以研究不同量子過程能力和生物功能之間的關係,包含激發能量的轉移在演化進程中,量子力學特徵之變化;激發能量轉移的穩健性,和突變、局部缺陷等異常情況的關聯。
The Fenna-Matthews-Olson (FMO) complex is an eight-site structure used by certain types of bacteria to transfer excitations from a light-harvesting antenna to a reaction center. Here, we characterize several prescribed quantum-mechanical features of the excitation transfer in the FMO complex in a quantitatively precise manner. Two different measures are introduced to quantify the capabilities of entanglement generation, coherence creation and preservation, and superposition creation of quantum states for the dynamical process of energy transfer at room temperature. Since these capability measures do not depend on any specifics of the states being processed, our method provides a comprehensive way to investigate the relationship between different quantum process capabilities and biological function, including the change of mechanical characteristics of the excitation transfer in the FMO complex which evolves as time goes on, and the robustness of excitation energy transfer under mutations, local defects, and other abnormal situations.
[1] J Thomas Beatty, Jörg Overmann, Michael T Lince, Ann K Manske, Andrew S Lang,
Robert E Blankenship, Cindy L Van Dover, Tracey A Martinson, and F Gerald Plumley.
An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent.
Proceedings of the National Academy of Sciences, 102(26):9306–9310, 2005.
[2] Masoud Mohseni, Yasser Omar, Gregory S Engel, and Martin B Plenio. Quantum effects
in biology. Cambridge University Press, 2014.
[3] Gregory D Scholes, Graham R Fleming, Alexandra Olaya-Castro, and Rienk Van Grondelle.
Lessons from nature about solar light harvesting. Nature chemistry, 3(10):763,
2011.
[4] Neill Lambert, Yueh-Nan Chen, Yuan-Chung Cheng, Che-Ming Li, Guang-Yin Chen,
and Franco Nori. Quantum biology. Nature Physics, 9(1):10, 2013.
[5] Stéphanie Valleau, Romain A Studer, Florian Häse, Christoph Kreisbeck, Rafael G Saer,
Robert E Blankenship, Eugene I Shakhnovich, and Alán Aspuru-Guzik. Absence of
selection for quantum coherence in the fenna–matthews–olson complex: a combined
evolutionary and excitonic study. ACS central science, 3(10):1086–1095, 2017.
[6] Carsten Olbrich, Thomas LC Jansen, Jörg Liebers, Mortaza Aghtar, Johan Strümpfer,
Klaus Schulten, Jasper Knoester, and Ulrich Kleinekathöfer. From atomistic modeling
to excitation transfer and two-dimensional spectra of the fmo light-harvesting complex.
The Journal of Physical Chemistry B, 115(26):8609–8621, 2011.
[7] Guang-Yin Chen, Neill Lambert, Che-Ming Li, Yueh-Nan Chen, and Franco Nori.
Rerouting excitation transfers in the fenna-matthews-olson complex. Physical Review
E, 88(3):032120, 2013.
[8] Martin B Plenio and Susana F Huelga. Dephasing-assisted transport: quantum networks
and biomolecules. New Journal of Physics, 10(11):113019, 2008.
[9] Julia Adolphs and Thomas Renger. How proteins trigger excitation energy transfer in
the fmo complex of green sulfur bacteria. Biophysical Journal, 91(8):2778–2797, 2006.
[10] Gregory S Engel, Tessa R Calhoun, Elizabeth L Read, Tae-Kyu Ahn, Tomáš Mančal,
Yuan-Chung Cheng, Robert E Blankenship, and Graham R Fleming. Evidence for
wavelike energy transfer through quantum coherence in photosynthetic systems. Nature,
446(7137):782, 2007.
[11] Alexandra Olaya-Castro, Chiu Fan Lee, Francesca Fassioli Olsen, and Neil F Johnson.
Efficiency of energy transfer in a light-harvesting system under quantum coherence.
Physical Review B, 78(8):085115, 2008.
[12] Filippo Caruso, Animesh Datta, Susana F Huelga, Martin B Plenio, and Alex W Chin.
Fundamental mechanisms of noise supported energy transfer in biological systems.
Technical report, 2009.
[13] Filippo Caruso, Alex W Chin, Animesh Datta, Susana F Huelga, and Martin B Plenio.
Highly efficient energy excitation transfer in light-harvesting complexes: The
fundamental role of noise-assisted transport. The Journal of Chemical Physics,
131(10):09B612, 2009.
[14] Patrick Rebentrost, Masoud Mohseni, Ivan Kassal, Seth Lloyd, and Alán Aspuru-
Guzik. Environment-assisted quantum transport. New Journal of Physics,
11(3):033003, 2009.
[15] Hohjai Lee, Yuan-Chung Cheng, and Graham R Fleming. Quantum coherence accelerating
photosynthetic energy transfer. In Ultrafast Phenomena XVI, pages 607–609.
Springer, 2009.
[16] Jianzhong Wen, Jiro Harada, Kenny Buyle, Kevin Yuan, Hitoshi Tamiaki, Hirozo Ohoka,
Richard A Loomis, and Robert E Blankenship. Characterization of an fmo variant
of chlorobaculum tepidum carrying bacteriochlorophyll a esterified by geranylgeraniol.
Biochemistry, 49(26):5455–5463, 2010.
[17] Jeremy Moix, Jianlan Wu, Pengfei Huo, David Coker, and Jianshu Cao. Efficient energy
transfer in light-harvesting systems, iii: The influence of the eighth bacteriochlorophyll
on the dynamics and efficiency in fmo. The Journal of Physical Chemistry Letters,
2(24):3045–3052, 2011.
[18] Avinash Kolli, Ahsan Nazir, and Alexandra Olaya-Castro. Electronic excitation dynamics
in multichromophoric systems described via a polaron-representation master
equation. The Journal of chemical physics, 135(15):154112, 2011.
[19] Joel Yuen-Zhou, Jacob J Krich, Masoud Mohseni, and Alán Aspuru-Guzik. Quantum
state and process tomography of energy transfer systems via ultrafast spectroscopy. Proceedings
of the National Academy of Sciences, 108(43):17615–17620, 2011.
[20] Patrick Rebentrost, Sangwoo Shim, Joel Yuen-Zhou, and Alan Aspuru-Guzik. Characterization
and quantification of the role of coherence in ultrafast quantum biological
experiments using quantum master equations, atomistic simulations, and quantum process
tomography. Procedia Chemistry, 3(1):332–346, 2011.
[21] A Thilagam. Natural light harvesting systems: unraveling the quantum puzzles. Journal
of Mathematical Chemistry, 53(2):466–494, 2015.
[22] Rafael Saer, Gregory S Orf, Xun Lu, Hao Zhang, Matthew J Cuneo, Dean AA Myles,
and Robert E Blankenship. Perturbation of bacteriochlorophyll molecules in fenna–
matthews–olson protein complexes through mutagenesis of cysteine residues. Biochimica
et Biophysica Acta (BBA)-Bioenergetics, 1857(9):1455–1463, 2016.
[23] Davinder Singh and Shubhrangshu Dasgupta. Influence of pigment-protein coupling
on excitation energy transfer in fmo complex. arXiv preprint arXiv:1605.00920, 2016.
[24] Guang-Yin Chen, Neill Lambert, Yen-An Shih, Meng-Han Liu, Yueh-Nan Chen, and
Franco Nori. Plasmonic bio-sensing for the fenna-matthews-olson complex. Scientific
reports, 7:39720, 2017.
[25] Gregory D Scholes, Graham R Fleming, Lin X Chen, Alán Aspuru-Guzik, Andreas
Buchleitner, David F Coker, Gregory S Engel, Rienk Van Grondelle, Akihito Ishizaki,
David M Jonas, et al. Using coherence to enhance function in chemical and biophysical
systems. Nature, 543(7647):647, 2017.
[26] Rafael G Saer, Valentyn Stadnytskyi, Nikki C Magdaong, Carrie Goodson, Sergei
Savikhin, and Robert E Blankenship. Probing the excitonic landscape of the chlorobaculum
tepidum fenna-matthews-olson (fmo) complex: a mutagenesis approach. Biochimica
et Biophysica Acta (BBA)-Bioenergetics, 1858(4):288–296, 2017.
[27] SA Oh, DF Coker, and DAW Hutchinson. Optimization of energy transport in the fennamatthews-
olson complex via site-varying pigment-protein interactions. The Journal of
chemical physics, 150(8):085102, 2019.
[28] Heinz-Peter Breuer, Francesco Petruccione, et al. The theory of open quantum systems.
Oxford University Press on Demand, 2002.
[29] Seogjoo Jang, Yuan-Chung Cheng, David R Reichman, and Joel D Eaves. Theory of
coherent resonance energy transfer, 2008.
[30] Akihito Ishizaki, Tessa R Calhoun, Gabriela S Schlau-Cohen, and Graham R Fleming.
Quantum coherence and its interplay with protein environments in photosynthetic
electronic energy transfer. Physical Chemistry Chemical Physics, 12(27):7319–7337,
2010.
[31] Filippo Caruso, Susana F Huelga, and Martin B Plenio. Noise-enhanced classical
and quantum capacities in communication networks. Physical review letters,
105(19):190501, 2010.
[32] MC Wakeham and MR Jones. Rewiring photosynthesis: engineering wrong-way electron
transfer in the purple bacterial reaction centre, 2005.
[33] Dugan Hayes, Jianzhong Wen, Gitt Panitchayangkoon, Robert E Blankenship, and Gregory
S Engel. Robustness of electronic coherence in the fenna–matthews–olson complex
to vibronic and structural modifications. Faraday discussions, 150:459–469, 2011.
[34] Chung-Cheng Kuo, Shih-Hsuan Chen, Wei-Ting Lee, Hung-Ming Chen, He Lu, and
Che-Ming Li. Quantum process capability. arXiv preprint arXiv:1811.10307, 2018.
[35] Helge Kragh. Quantum generations: A history of physics in the twentieth century.
Princeton University Press, 2002.
[36] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,
2002.
[37] Jen-Hsiang Hsieh, Shih-Hsuan Chen, and Che-Ming Li. Quantifying quantummechanical
processes. Scientific reports, 7(1):13588, 2017.
[38] RH Tütüncü, KC Toh, and MJ Todd. Sdpt3—a matlab software package for
semidefinite-quadratic-linear programming, version 3.0. Web page http://www. math.
nus. edu. sg/mattohkc/sdpt3. html, 2001.
[39] Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab. In
2004 IEEE international conference on robotics and automation (IEEE Cat. No.
04CH37508), pages 284–289. IEEE, 2004.
[40] Nicolas Gisin and Rob Thew. Quantum communication. Nature photonics, 1(3):165,
2007.
[41] Thaddeus D Ladd, Fedor Jelezko, Raymond Laflamme, Yasunobu Nakamura, Christopher
Monroe, and Jeremy Lloyd O’Brien. Quantum computers. Nature, 464(7285):45,
2010.
[42] Gavin Brennen, Elisabeth Giacobino, and Christoph Simon. Focus on quantum memory.
New Journal of Physics, 17(5):050201, 2015.
[43] Tillmann Baumgratz, Marcus Cramer, and Martin B Plenio. Quantifying coherence.
Physical review letters, 113(14):140401, 2014.
[44] Thomas Theurer, Nathan Killoran, Dario Egloff, and Martin B Plenio. Resource theory
of superposition. Physical review letters, 119(23):230401, 2017.
[45] Asher Peres. Separability criterion for density matrices. Physical Review Letters,
77(8):1413, 1996.
[46] R Horodecki. Horodecki. m., horodecki p. separability of mixed states: Necessary and
sufficient conditions. Phys. Lett., 223:333, 1996.
[47] Gerhard Ritschel, Jan Roden, Walter T Strunz, Alán Aspuru-Guzik, and Alexander Eisfeld.
Absence of quantum oscillations and dependence on site energies in electronic
excitation transfer in the fenna–matthews–olson trimer. The Journal of Physical Chemistry
Letters, 2(22):2912–2917, 2011.
[48] Robert M Pearlstein. Theory of the optical spectra of the bacteriochlorophyll a antenna
protein trimer from prosthecochloris aestuarii. Photosynthesis research, 31(3):213–226,
1992.
[49] RJW Louwe, J Vrieze, AJ Hoff, and TJ Aartsma. Toward an integral interpretation of the
optical steady-state spectra of the fmo-complex of prosthecochloris aestuarii. 2. exciton
simulations. The Journal of Physical Chemistry B, 101(51):11280–11287, 1997.
[50] Thomas Renger, Mohamed El-Amine Madjet, Marcel Schmidt Am Busch, Julian
Adolphs, and Frank Müh. Structure-based modeling of energy transfer in photosynthesis.
Photosynthesis research, 116(2-3):367–388, 2013.
[51] Brian Hall, Monroe W Strickberger, et al. Strickberger’s evolution. Jones & Bartlett
Learning, 2008.
[52] Mark M Wilde, James M McCracken, and Ari Mizel. Could light harvesting complexes
exhibit non-classical effects at room temperature? Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 466(2117):1347–1363, 2009.
[53] Hong-Bin Chen, Jiun-Yi Lien, Chi-Chuan Hwang, and Yueh-Nan Chen. Long-lived
quantum coherence and non-markovianity of photosynthetic complexes. Physical Review
E, 89(4):042147, 2014.
校內:2021-08-31公開